Update of the Agricultural Biogas Industry in Canada

October 25, 2010
Biogas Industry in Canada

- Biogas industry in Canada is growing:
 - Currently 20 farm digesters are operating across the country, with 13 in Ontario and 5 in Alberta alone.
 - By 2012 there will be 28 farm based digesters operating in Ontario.
- Trend in Canada is to use waste residues as co-substrates with manure, with less emphasis on co-digesting manure with energy crops.
- Provincial and federal governments are committed to fostering adoption of farm based biogas plants
 - Example: Feed-In-Tariff program (Ontario) offers guaranteed pricing for renewable electricity production.
- Revenues from manure digesters are not the only considerations and environmental benefits associated with anaerobic digestion of manure need to be assessed.
Ontario

- Province with most advanced anaerobic digestion industry
- Feed-In-Tariff Program – First in North America
 - Guaranteed, stable, competitive prices for renewable energy projects under 20-year contracts
 - Prices cover capital, operating and maintenance costs and allow for reasonable rate of return on investment

<table>
<thead>
<tr>
<th>Generator Size</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 100 kW</td>
<td>19.5¢/kWh</td>
</tr>
<tr>
<td>> 100 kW ≤ 250 kW</td>
<td>18.5¢/kWh</td>
</tr>
<tr>
<td>≤ 500 kW</td>
<td>16.0¢/kWh</td>
</tr>
<tr>
<td>> 500 kW ≤ 10 MW</td>
<td>14.7¢/kWh</td>
</tr>
</tbody>
</table>
Ontario

- Ontario Biogas Systems Financial Assistance Program (OBSFAP) delivered by the Ontario Ministry of Agriculture, Food and Rural Affairs:
 - Financial grants for design and construction of biogas systems - $11.2 million program
 - Program was setup to kick-start biogas industry in Ontario
 - Projects funded:
 - Construction of 24 biogas plants
 - 48 feasibility studies
Manure Digester - Ontario

- Fepro Farms (Cobden, ON)
 - 290 dairy cows (165 lactating, 85 heifers, 40 calves)
 - Mesophilic (40°C) continuously mixed system
 - Operating since 2003
 - As of 2007, co-digestion of dairy manure with waste grease
 - In 2009 expanded electrical generation from 65 kW to 500 kW
 - Electricity production sold to grid under FIT program
 - Heat production used to heat digester, 2 homes, machine shop and milking parlour
 - Digestate is land applied
Manure Digester - Ontario

- **Terryland Farms (St-Eugene, ON)**
 - 230 dairy cows (150 lactating)
 - Mesophilic (40°C) continuously mixed system
 - CH-Four Biogas system
 - $600,000 system
 - Operating since fall 2007
 - Co-digestion of dairy manure with waste grease
 - 360 kW electricity generation
 - Electricity production sold to grid under FIT program
 - Heat production used to heat digester, home, greenhouse milking parlour and to dry silage
 - Digestate is land applied
Manure Digester - Ontario

- Pinehedge Farms (St-Eugene, ON)
 - 95 dairy cows (70 lactating)
 - Mesophilic (40°C) continuously mixed system
 - CH-Four Biogas system
 - $350,000 system
 - Operating since 2008
 - Co-digestion of dairy manure with limited amounts of waste grease
 - 100 kW electricity generation
 - Electricity production to be sold to grid
 - Heat production used to heat digester and for on-site organic yoghurt and kefir production
 - Digestate is land applied
Manure Digester - Ontario

- Ledgecroft Farms (Seeley’s Bay, ON)
 - 500 dairy cows (225 lactating)
 - Mesophilic continuously mixed system
 - PlanET Biogas Solutions system
 - Operating since 2008
 - Co-digestion of dairy manure and waste grease
 - 500 kW electricity generation
 - Electricity production sold to grid under FIT program
 - Heat production used to heat digester and used on the farm
 - Digestate is land applied
Manure Digester - Ontario

- Donnandale Farms (Stirling, ON)
 - 650 dairy cows (300 lactating)
 - Mesophilic continuously mixed system
 - Plant built by Powerbase Energy Systems Inc.
 - Operating since 2009
 - Co-digestion of dairy manure and waste grease
 - 500 kW electricity generation
 - Electricity production to be sold to grid under FIT program
 - Heat production used to heat digester, home and barn
 - Digestate solids are separated and used for animal bedding and liquid portion is land applied
Manure Digester - Ontario

• Clearydale Farms (Spencerville, ON)
 – 300 dairy cows (150 lactating)
 – $1.4 million project
 – Mesophilic (40°C) system
 – Plant built by Powerbase Energy Systems Inc.
 – Operating since spring 2010
 – Co-digestion of manure with waste grease and organic grocery refuse
 – 500 kW electricity generation
 – Electricity production sold to grid under FIT program
 – Heat production used for home, outdoor swimming pool and workshop
 – Digestate is land applied
Manure Digester - Ontario

- Delft Blue Veal Inc. (Cambridge, ON)
 - 2700 veal calves
 - $2.5 million project
 - Mesophilic (40°C) system
 - PlanET Biogas Solutions system
 - Operating since spring 2010
 - Co-digestion of manure with waste grease and some organic grocery refuse
 - 500 kW electricity generation
 - Electricity production sold to grid under FIT program
 - Heat production used at the farm
 - Digestate is land applied
Manure Digester - Ontario

- Stanton Brothers Ltd. (Ilderton, ON)
 - 2000 dairy cows
 - $4.1 million project
 - Eight 115 m³ digesters (vertical induced blanket reactors)
 - Mesophilic (37°C) system
 - System designed by Andigen LC and built by Dairy Lane Systems
 - Operating since 2008
 - Co-digestion of manure with waste grease
 - 300 kW electricity generation and will be expanding to 1.3 MW
 - Electricity production sold to grid under FIT program
 - Heat production used to heat digester and barn
 - Digestate solids are separated and used as animal bedding and liquid is land applied
Manure Digester - Ontario

• Clovermead Farms (Alma, ON)
 – 375 dairy cows (160 lactating)
 – Mesophilic (37°C) system
 – Operating since spring 2010
 – Co-digestion of dairy manure, off-farm poultry manure and off-farm waste
 – Up to 500 kW electricity generation capacity (currently running at 250 kW)
 – Electricity production sold to grid under FIT program
 – Heat production used to heat digester and barn
 – Digestate is land applied
Manure Digester - Ontario

- Kirchmeier Farms (St-Isidore, ON)
 - 200 dairy cows
 - CH-Four Biogas system
 - 1500 m³ digester
 - Mesophilic (37°C) system
 - Operating since spring 2010
 - Co-digestion of dairy manure, waste grease and biomass waste
 - 500 kW electricity generation
 - Electricity production to be sold to grid under FIT program
 - Heat production used to heat digester and barn
 - Digestate is land applied
Digester - Ontario

- Vandermeer Greenhouses (Niagara-on-the-Lake, ON)
 - PlanET Biogas system
 - One primary digester (1527 m³) and one secondary digester (1527 m³)
 - Mesophilic (37°C) system
 - Operating since 2008
 - Co-digestion of grape pomace with some poultry manure and greenhouse clippings
 - 335 kW electricity generation
 - Electricity production sold to grid under FIT program
 - Heat production used in greenhouse
 - Solid fraction of digesate is separated and re-used in greenhouse
Bayview Flowers (Jordan Station, ON)
- PlanET Biogas system
- One primary digester (1200 m3) and one secondary digester (1200 m3)
- Mesophilic (37°C) system
- Operating since 2007
- Co-digestion of greenhouse clippings, dairy manure, off-spec dog kibble, corn silage and some grape pomace
- 250 kW electricity generation
- Electricity and heat used in greenhouse, with surplus electricity sold to grid under FIT program
- Digesate is land applied
Pelee Hydroponics (Leamington, ON)
- Owned and designed by Seacliff Energy Inc.
- $6.5 million system
- Two-stage digestion system
- Mesophilic (37°C) system
- Operating since early 2010
- Co-digestion of waste greenhouse vines and waste from food processors, with a small amount of manure
- Phase 1: 1.6 MW electricity generation
- Phase 2: 3.2 MW electricity generation (planned for 2012)
- Electricity production sold to grid under FIT program
- Heat production used in 6.5 acre tomatoe greenhouse
- Digesate is separated into solid and liquid fractions that will be sold as fertilizers, where the liquid fraction may be re-used in hydroponics system
Manure Digester – Manitoba (MB)

- Cook Feeders (Teulon, MB)
 - 18,000 hogs/yr
 - Designed by Bio-Terre Systems Inc.
 - Psychrophilic (20-25°C) plug-flow in-ground digester system
 - Operating since 2005
 - 2 digester system
 - System capacity is 13,000 m³/yr
 - Biogas used to heat digester and excess is flared
 - Digestate is land applied
Manure Digester – Manitoba (MB)

- Riverbend Colony (Carberry, MB)
 - 1500 hogs/yr
 - Mesophilic-thermophilic system
 - Operating since 2007
 - Biogas used to produce electricity for colony
 - A Vertical Shear Enhanced Process (VSEP) filter system used to clean digestate
 - Digestate is land applied
Manure Digester – Manitoba (MB)

• The following digester was approved for funding by Manitoba government but I can’t find information on the system:
 – Topeka Farms (Grunthal, MB)
 • 5500 hog operation
 • Thermophilic digestion
Manure Digester – Manitoba (MB)

- University of Manitoba (Glenlea, MB)
 - Pilot-scale digesters housed in greenhouse
 - Used for studies assessing the co-digestion of hog manure with other substrates
 - Several research projects have been conducted with University of Manitoba professors and industry
Saskatchewan (SK)

- **Cudsworth Pork Investors Group (Cudsworth, SK)**
 - 35,000 hogs/year
 - Mesophilic digester (900m3) treating hog manure
 - System loading: 100 m3/day
 - Biogas produced: 1,600 m3/day
 - Biogas used for electricity (120 kW$_e$) and heat production (630 kW$_t$)
 - Nutrient separation technology to produce a variety of end products from digestate
 - May be temporarily stopped
Alberta (AB)

• Great electrical grid due to extensive rural oil development
• Large feedlots with large volumes of manure
• BioEnergy Producer Credit Program
 – Energy base price (~7 ¢/kWh) + 6 ¢/kWh (for <3 MW)
 – Available for both electric or thermal energy
• Focus is using establishing GHG credit with provincial government
Alberta (AB)

- 2 operating farm digesters
- 1 farm digester currently being rebuilt
- 3 operating covered lagoons at food processors
 - Replacing natural gas in boilers
- 4 proposed farm biodigester projects (beef and pork)
- 1 under construction, Andigen system
 - Ranch – at regional composting site – onsite energy use
 - Focus on GHG credits
- 3 proposed regional digester projects

- Focus: odour and waste management, GHG credits
Manure Digester – Alberta (AB)

• Highland Feeders (Vegreville, AB)
 – Partners with Highmark Renewables and Integrated Manure Utilization System (IMUS)
 – 6000 cattle in feedlot
 – Two 1800 m³ fully mixed digesters
 – $6.8 million project
 – Thermophilic operation (55°C)
 – 1 MW system
 – Only digesting cattle manure
 – Digestate sold as fertilizer
 – Verified GHG credits, to be registered with Alberta Government
 • Estimate 8000 tonnes/year
 • Alberta government sets floor price of $15/tonne
 – To expand to 2.5 MW production:
 • Manure will be from 30,000 cattle
 • Two 7000 m³ digesters
 • $11 million project
 • Co-digestion: Manure + corn stillage + other co-substrates
 • Biogas to fuel ethanol production and dry distillers grains (at future corn ethanol plant)
Manure Digester – Alberta (AB)

- Iron Creek Hutterite Colony (Viking, AB)
 - Partners with BioGem Power Systems
 - 1200 hogs
 - Three 1000 m³ fully mixed digesters
 - $2 million project
 - Mesophilic operation (37°C)
 - Potential co-digestion with slaughterhouse waste
 - System loading of 88m³/day
 - Plant generates 350 kW of electrical energy and 770 kW of thermal energy (>3,000,000 kWh/yr of electricity)
 - Digesterate goes through solid/liquid separation
 - Solids are land applied
 - Liquid re-used as process and wash waters
 - System being re-commissioned and may not be currently operational
Alberta (AB)

- Not sure if you want to discuss this one as it is still in the conceptual stage
- Prion destruction using thermal hydrolysis
- End product fed into biogas system
- Pilot plant to be built in Lacombe, AB
 - Co-digestion with agricultural and municipal organic wastes
British Columbia (BC)

- **BC Hydro and Fortis:**
 - 90% green generation resources
 - Natural gas is a dirty option in comparison
- **Will be introducing a FIT program shortly for alternative energy production**
- **BC Bio-Energy Strategy and Energy Plan strategies:**
 - Reduce GHG emissions
 - Invest in alternative energy technologies
- **Climate Action Charter:**
 - Municipalities committed to be carbon neutral by 2012
- **Terasen Gas** is the largest distributor of natural gas in BC and also develops alternative energy systems
 - Beginning to develop biogas from landfills and agricultural waste
 - Pilot projects include:
 - Catalyst Power in Abbotsford (BC) to produce biogas from farm waste
 - Salmon Arm Landfill in the Columbian Shuswap Regional District to capture and upgrade landfill gas into biomethane
Manure Digester – British Columbia (BC)

- Catalyst Power (Abbotsford, BC)
 - Plan-ET Biogas system
 - $4.5 million project
 - Mesophilic digestion (38°C)
 - Two primary digesters and one secondary digester
 - Start up summer 2010
 - Co-digestion of dairy and chicken manure with food processing wastes (e.g. FOG, DAF, potato waste)
 - Inputs: up to 350 t/day of manure and up to 40 t/day of food processing waste
 - Phase 1: 0.8 MW_{eq}
 - Phase 2: 1.6 MW_{eq}
 - Biogas upgraded to natural gas pipeline specifications and fed into local utility grid (Greenlane Biogas - water scrubbing technology)
 - Liquid digestate gets land applied while solid digestate goes for animal bedding
Trend in Canada

• Significant differences in anaerobic digestion industry between provinces.
• Lack of clear economic driver means industry is growing slowly.
• GHG credits needs to be part of economic driver for industry
• Energy policies are primarily a provincial responsibility, individual small industry/farmer groups, or individual farmers are essentially on their own to lobby/advocate
• Growing interest in biogas upgrading
 – Several hydro-electricity or electrical grid limitations exist which means there is a growing focus on upgrading (where natural gas exists in rural settings)
Several studies are being conducted to investigate environmental impacts associated with on-farm manure digesters:

- **University of Guelph**: Characterizing digestate quality and impacts to air, soil and groundwater quality from digestate storage and after land application.

- **Agriculture and Agri-food Canada (AAFC)**: Measurement of fugitive CH$_4$ and NH$_3$ emissions at the farm.

- **Ontario Ministry of Agriculture, Food and Rural Affairs (OMAFRA)**: Collection of data to develop a GHG Offset Protocol.
University of Guelph

Air, Soil and Groundwater Quality Monitoring of Raw and Digested Manure from Storage Reservoirs and Land Application Trials

Researchers: Anna Crolla, M.A.Sc., P.Eng.
Chris Kinsley, M.Eng., P.Eng.
Claudia Wagner-Riddle, Ph.D.
Project Overview

• Anaerobic Digesters:
 – Monitoring of 3 on-farm anaerobic digesters
 – Evaluate use of co-substrates for enhanced biogas production (pilot & full scales)
 – CH$_4$ measurements from raw and digested manure storages

• Land Application Trials:
 – Land application trials for GHG measurements (AAFC)
 – Land application trials for fate of nutrients and pathogens in soil and water
Anaerobic Digesters

1. Fepro Farms (dairy operation) – Cobden, Ontario
2. Terryland Farm (dairy operation) – St. Eugene, Ontario

Monitoring Parameters

<table>
<thead>
<tr>
<th>Digester System Performance</th>
<th>Environmental Impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biogas production & CH₄ concentration</td>
<td>Volatile fatty acids (VFAs) and Odours</td>
</tr>
<tr>
<td>Electricity & heat production</td>
<td>E.coli</td>
</tr>
<tr>
<td>Organic Matter: COD, Volatile Solids</td>
<td>Salmonella</td>
</tr>
<tr>
<td>Nutrients: NH₄⁺, Organic-N, o-PO₄³⁻, TP</td>
<td>C.perfringens</td>
</tr>
<tr>
<td>pH, IA/TA ratio (FOS/TAC)</td>
<td>Enterococci</td>
</tr>
</tbody>
</table>
Land Application Trials

- University of Guelph at Alfred and AAFC at Ottawa – Monitoring of air, soil and water after land application of raw manure, digested manure and inorganic fertilizer.

Monitoring Parameters

<table>
<thead>
<tr>
<th>Groundwater and Soil Samples</th>
<th>Air Measurements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nutrients: NH$_4^+$, NO$_3^-$, o-PO$_4^{3-}$, TP, Organic-N</td>
<td>NH$_3$ & N$_2$O</td>
</tr>
<tr>
<td>E.coli</td>
<td>Plant Samples</td>
</tr>
<tr>
<td>Salmonella</td>
<td>Plant Yield</td>
</tr>
<tr>
<td>C.perfringens</td>
<td>Total-N</td>
</tr>
<tr>
<td>Enterococci</td>
<td>Total-P</td>
</tr>
</tbody>
</table>
Research Study Outcomes

• Life Cycle Analysis (LCA) for the on-farm manure anaerobic digester technology (as part of a larger study lead by Dr. Wagner-Riddle).

• Recommendations for land application of digested manure that minimize nutrients & pathogens to surface and subsurface waters under varying agronomic conditions.

• Recommendations for mitigating GHG emissions from the land application of digested manure.
Measurement of Fugitive CH$_4$ Emissions from Digestion System and NH$_3$ Emissions following Land Application of Digested Manure

Researchers: Tom Flesch, Ph.D.
Ray Desjardins, Ph.D.
Project Overview

• Anaerobic Digesters:
 – Quantify CH$_4$ fugitive emissions from the whole biodigestion system

• Land Application Trials:
 – Measurements of NH$_3$ emissions following land application of digested manure
Quantifying Fugitive CH$_4$ Emissions from Digesters

- Anaerobic digesters reduce GHG emissions & generate clean energy.
- GHG reductions depend on many factors (design, feedstock, etc.), including quantity of fugitive CH$_4$ emissions.
- Minimizing fugitive emissions can maximize energy production, while minimizing environmental impacts.

Quantifying fugitive CH$_4$ emissions is difficult – commonly assumed:
- 15% of total CH$_4$ production (California Climate Action Registry)
- 15% of production (Clean Development Mechanism (CDM), 2005)
- 10% of production (Intergovernmental Panel on Climate Change (IPCC), 2006)
- 5% of production (US Environmental Protection Agency (USEPA) – for covered anaerobic lagoons)
Quantifying NH$_3$ Emissions from Land Application of Digested Dairy Manure

- Increased concentration of NH$_4^+$-N in digested manure can lead to increased NH$_3$ emissions during land application
- Land application trials using digested dairy manure are conducted at Terryland Farms
- Digested manure is spray broadcast in 8m wide bands and incorporated within 24 hours
- Digested manure is applied at 1x agronomic rate for nitrogen
Research Study Outcomes

- Quantify CH$_4$ and NH$_3$ emissions from farms with biodigesters.
- Recommendations to improve on-farm management of raw and digested manure that minimize methane emissions.
- Improve efficiency of CH$_4$ flaring.
- Recommendations for land application of digested manure that minimize ammonia emissions.
Ontario Ministry of Agriculture, Food and Rural Affairs (OMAFRA)

Biogas System Greenhouse Gas Offset Protocol

Program Analyst: Chris Duke, Ph.D.
Researchers: Anna Crolla, M.A.Sc., P.Eng.
Chris Kinsley, M.Eng., P.Eng.
Claudia Wagner-Riddle, Ph.D.
Project Overview

• New project that began in Spring 2010 (2 year study).
• Outcomes will provide data required for the development of a Biogas Offset Protocol.
• Offset credits will represent a significant revenue stream for most biogas systems – leading to growth of the biogas sector.
• 10 on-farm digesters across Ontario will be monitored for digester performance; where raw feedstocks and digestate are fully characterized and methane yields determined.
• Potential CH₄ emissions from uncovered digestate storage reservoirs will be estimated.
• Conducted in conjunction with a University of Guelph study to investigate emissions of CH₄ and N₂O from farms with biodigesters.