Biogas and digestate in agriculture

Tormod Briseid, Bioforsk
Biogas plants in Norway:

- Several biogas plants for sewage sludge treatment in the nineties - focus on treatment and stabilization.

- No biogas plants using manure or food waste before 2000, still very few plants.

- Focus on the climate effect - not energy production.

- Also a focus on nutrient reuse.

- Agriculture is important, both as a deliver of substrates and the user of nutrients/digestate.
Reduced greenhouse gases from agriculture

- Treatment of manure and food waste in biogas plants
 - Reduced methane emission
 - Reduced emission of N₂O
 - Reduced emission of ammonia
- Production of biogas as renewable energy - substitution of fossil fuels
- Other environmental effects of biogas in agriculture
- The cost of this action (NOK per tonn CO₂ ekv emission reduced)
Reduced greenhouse gases from agriculture - CO$_2$ ekv. (tons) - Biogas treatment of manure (Norway)

<table>
<thead>
<tr>
<th>% manure treated:</th>
<th>20 %</th>
<th>30 %</th>
<th>40 %</th>
<th>50%</th>
<th>60 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methane</td>
<td>53 669</td>
<td>80 504</td>
<td>107 339</td>
<td>134 174</td>
<td>161 010</td>
</tr>
<tr>
<td>N$_2$O</td>
<td>37 315</td>
<td>55 973</td>
<td>74 630</td>
<td>93 288</td>
<td>11 194</td>
</tr>
<tr>
<td>Ammonia</td>
<td>5 717</td>
<td>8 576</td>
<td>11 434</td>
<td>14 293</td>
<td>17 151</td>
</tr>
<tr>
<td>Fossile energy sub.</td>
<td>124 524</td>
<td>186 786</td>
<td>249 048</td>
<td>311 310</td>
<td>373 573</td>
</tr>
</tbody>
</table>
Reduced greenhouse gases from agriculture - CO₂ ekv.(tons) - Biogas treatment of manure (Norway)

<table>
<thead>
<tr>
<th>% manure treated:</th>
<th>20 %</th>
<th>30 %</th>
<th>40 %</th>
<th>50%</th>
<th>60 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methane</td>
<td>53 669</td>
<td>80 504</td>
<td>107 339</td>
<td>134 174</td>
<td>161 010</td>
</tr>
<tr>
<td>N₂O</td>
<td>37 315</td>
<td>55 973</td>
<td>74 630</td>
<td>93 288</td>
<td>11 194</td>
</tr>
<tr>
<td>Ammonia</td>
<td>5 717</td>
<td>8 576</td>
<td>11 434</td>
<td>14 293</td>
<td>17 151</td>
</tr>
<tr>
<td>Fossile energy sub.</td>
<td>124 524</td>
<td>186 786</td>
<td>249 048</td>
<td>311 310</td>
<td>373 573</td>
</tr>
</tbody>
</table>
Biogas and agriculture:

• Farm biogas plants. Manure and other energy rich substrates. Digestate used at local farm.

• Central biogas plants for food waste treatment. Digestate used in agriculture.

• Central industrial biogas plants for treatment of manure, industrial organic waste and food waste. Digestate used in agriculture.

What are the main challenges?

Ecopro in Skjørdalen/Ravlo i Verdal Kommune in Nord-Trøndelag.
Farm biogas plants in Norway

One plant (Åna) is studied in the project: Biogas as part of the agricultural reuse of energy and nutrients (2008 - 2011)
Biogas as part of the agricultural reuse of energy and nutrients (2008 - 2011)

- 280 m3 reactor volume, retention time 30 days
- Mesophilic process
- Substrates: Cattle manure (ca. 60m3 per week, about 60% of VS) and fish ensilage (ca. 5 m3, about 40% of VS).
- Methane production, about 1200 m3 per week, only 500 m3 when fish ensilage is not added.
- About 1/3 of the energy produced is used as heat and electricity at the plant. If fish ensilage is not used, no netto energy production is obtained during winter season.
Sensitive process to overloading

Planned amount of fish ensilage added

Measured amount of fish ensilage added
Specific methane production - Manure and fish ensilage as substrates - laboratory experiments
Barley crop – Åna farm biogas plant

<table>
<thead>
<tr>
<th>Fertilizer type</th>
<th>Fertilizer Kg N/daa</th>
<th>Crop (15 % vann) kg/daa</th>
<th>Hektolitervekt kg</th>
<th>1000-kornvekt g</th>
<th>Protein %</th>
</tr>
</thead>
<tbody>
<tr>
<td>No fertilizer</td>
<td>0</td>
<td>422 c</td>
<td>62,6</td>
<td>36,8</td>
<td>8,4</td>
</tr>
<tr>
<td>Mineral fert. 22-2-12</td>
<td>6</td>
<td>488 bc</td>
<td>64,2</td>
<td>35,5</td>
<td>8,4</td>
</tr>
<tr>
<td>Mineral fert.22-2-12</td>
<td>11</td>
<td>557 abc</td>
<td>66,1</td>
<td>39,6</td>
<td>10,0</td>
</tr>
<tr>
<td>Ammoniumnitrat + kaliumklorid</td>
<td>11</td>
<td>680 a</td>
<td>67,3</td>
<td>37,2</td>
<td>9,9</td>
</tr>
<tr>
<td>Manure Åna</td>
<td>12</td>
<td>551 abc</td>
<td>67,5</td>
<td>38,1</td>
<td>8,9</td>
</tr>
<tr>
<td>Digestate Åna</td>
<td>12</td>
<td>591 ab</td>
<td>68,9</td>
<td>40,1</td>
<td>9,6</td>
</tr>
</tbody>
</table>
Meadow crop – Åna farm biogas plant

<table>
<thead>
<tr>
<th>Fertilizer type:</th>
<th>Fertilizer Kg N/daa</th>
<th>Fertilizer Kg P/daa</th>
<th>Fertilizer Kg K/daa</th>
<th>Crop, dry matter kg/daa</th>
</tr>
</thead>
<tbody>
<tr>
<td>No fertilizer</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>384 b</td>
</tr>
<tr>
<td>Mineral 22-2-12</td>
<td>12</td>
<td>0,9</td>
<td>6,4</td>
<td>804 a</td>
</tr>
<tr>
<td>Mineral 22-2-12</td>
<td>24</td>
<td>1,9</td>
<td>12,8</td>
<td>990 a</td>
</tr>
<tr>
<td>Ammoniumnitrat + kaliumklorid</td>
<td>24</td>
<td>0</td>
<td>11,8</td>
<td>919 a</td>
</tr>
<tr>
<td>Manure - Åna</td>
<td>24</td>
<td>3,6</td>
<td>24</td>
<td>776 a</td>
</tr>
<tr>
<td>Digestate - Åna</td>
<td>24</td>
<td>3,0</td>
<td>20</td>
<td>823 a</td>
</tr>
</tbody>
</table>
Farm biogas plants in Norway

- Cold climate - high energy use.
- Dependent on energy rich co-substrate, f.ex. fish ensilage or food waste.
- Energy rich co-substrates may be marked sensitive to cost.
- The digestate give about equal yields as other fertilizers when equal amounts of mineral nitrogen is added.
- The digestate has lower viscosity and less odour than untreated manure.
- The main challenge for farm biogas plants in Norway is low energy prices and to high costs.
Central biogas plants - food waste or manure as main substrate

- In order to close the loop of recycling - the agriculture is the preferred receiver of the digestate.
- The agriculture needs accurate information about the nutrient content (N, P, K).
- The agriculture needs documentation about possible contaminants and the hygienic status to be sure that they run no risk using the digestate.
- The farmers must save money when they use the digestate instead of other fertilizers.
- Long transport distances and large volumes of digestate are important challenges for the economy. (Develop technologies to reduce liquid volume, combined by increased fertilizer concentration are important tasks for research)
Centralized biogas plants in agriculture

Central biogas plants for agriculture are planned in some regions (Rogaland, Vestfold, Østfold and Trønderlag)

Agriculture area in percent of total area (SSB, tema jordbruk, 2010)
Summary - biogas and agriculture

Driving forces:
- Reduction of greenhouse gases from agriculture
- Recycling of nutrients - closing the loop
- Production of renewable energy
- The farmers are positive - more activities in agriculture

Main challenges:
- Farm biogas plants: The economy - low energy prices
- Centralized plants:
 - The economy - low energy prices
 - Transport and storage of digestate - large volumes
 - Cooperation between plants and farmers
 - Dokumentation of fertilizer effect and risk control
In future we expect increased need for climate actions, increased energy prices and scarcity of nutrients for food production, f.ex. phosphorus.

so:

many biogas plants are expected to be established in orders to close the loop of recycling in future (also in Norway).

Thank you!