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INTRODUCTION
 Lignocellulosic biomass is an important feedstock for biofuel production

 In the ethanol production process a large quantity of sidestream are generated

 Sidestreams have energetic and commercial value

 AD of the sidestreams improves the total energetic output from biomass and 
removes the environmental load of the waste

 Sequential fermentation and anaerobic digestion is a promising solution [1-2].
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INTRODUCTION
 There is a continuous search for strategies that aim to improve the efficiency 

of second-generation bioethanol production. 

 Solid–liquid separation of the substrates has also been reported as a solution
to improve the overall biogas yields [3,4].

 How can solid-liquid separation affect the process flow of bioethanol
production?

3

3. Cestonaro do Amaral, A.; Kunz, A.; Radis Steinmetz, R.L.; Scussiato, L.A.; Tápparo, D.C.; Gaspareto, T.C. Influence of solid–liquid separation strategy on biogas yield from a stratified swine production system. J.
Environ. Manag. 2016, 168, 229–235, doi:10.1016/j.jenvman.2015.12.014.
4. Anjos, I.D.; Toneli, J.T.C.L.; Sagula, A.L.; Lucas Junior, J.d. Biogas production in dairy cattle systems, using batch digesters with and without solids separation in the substrates. Eng. Agric. 2017, 37, 426–432.



Experimental design
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Pretreatment
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1 – N2 tank
2 - pressure control valve
3 - manometer
4 - modified pressure vessel cap
5 - Parr instruments pressure vessel
6 - ceramic contact heater
7 - pressure release valve
8 - ventilation system
9 - thermocouple
10 - temperature controller unit.

[5] (Adapted from) Raud, M., J. Olt, and T. Kikas, N2 explosive decompression pretreatment of biomass for lignocellulosic ethanol production. Biomass and Bioenergy, 2016. 90(Supplement C): p. 1-6.



Biomethane potential
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 BMP test based on Owen et al. [6] and
Angelidaki et al. [7] before and after
each process step

 Experiments during 42-45 days
 Analysis of the TS and VS
 Methane content: Gas chromatograph

CP-4900 Micro-GC, Varian Inc.
 Measurements performed in triplicate

[6] Owen, W.F., et al., Bioassay for monitoring biochemical methane potential and anaerobic toxicity. Water Research, 1979. 13(6): p. 485-492.
[7] Angelidaki, I., et al., Defining the biomethane potential (BMP) of solid organic wastes and energy crops: a proposed protocol for batch assays. Water Science and Technology, 2009. 59(5): p. 927-934.
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Fraction Variable TS (g/kg) VS (g/kgTS)
- Untreated 931 ± 0 963 ±0

Liquid 
Fraction

Pretreated 18.0 ± 0.07 997 ± 0
Hydrolyzed 34.2 ± 0.09a 997 ± 0
Fermented 20.1 ± 0.8 997 ± 0b

Sidestream 23.4 ± 0.7a 997 ± 0b

Solid
Fraction

Pretreated 118 ± 0 996 ± 0b

Hydrolyzed 139 ± 2 995 ± 0b

Fermented 123 ± 1 995 ± 0
Sidestream 128 ± 6 995 ± 0

Characterisation of materials

Component Content (%)
Hemicellulose 32.6 ± 0.5
Cellulose 45.7 ± 0.2
Lignin 5.2 ± 0.0
Ash 3.8 ± 0.1
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Concentrations of glucose, xylose, glycerol, acetic acid, and ethanol (g/L) in
samples from different stages of bioethanol production that has been pretreated
with NE.

Results and Discussion

Glucose (g/L) Xylose (g/L) Glycerol (g/L) Acetic acid (g/L) Ethanol (g/L)

Pretreated 0.48 ± 0.02 0.6 ± 0.4 < 0.25a 1.53 ± 0.03 -

Hydrolysed 13.7 ± 0.8 4.06 ± 0.18 < 0.25a 1.81 ± 0.01 1.15 ± 0.05 

Fermented 0.25 ± 0.09 3.6 ± 0.4 0.73 ± 0.10 2.2 ± 0.2 8.3 ± 0.7

Stillage 0.8 ± 0.3 3.8 ± 0.6 0.71 ± 0.06 2.6 ± 0.3 -



Results and Discussion
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 Samples from the liquid fraction  Samples from the solid fraction



Results and Discussion
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Fig 3. Maximum methane yield (Bmax) for the fitting curves of samples
taken from the liquid and solid fraction of pretreated, hydrolyzed,
fermented material, and the bioethanol sidestream, pretreated with NED.

Maximum methane yield

Fig 4. Kinetic rate constant (k) and correlation coefficient (R2) for the fitting
curves of samples from the liquid and solid fraction of pretreated, hydrolyzed,
fermented material, and the bioethanol sidestream, pretreated with NED.

Kinetic rate constant



Results and Discussion
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Fraction Variable
85% Bmax 95% Bmax

mol CH4/100 g Days mol CH4/100 g Days
Untreated - 0.88 14.0 0.98 21.7

Liquid Fraction
Pretreated 0.16 2.6 0.18 4.1
Hydrolyzed 0.39 2.8 0.44 4.5
Fermented 0.45 2.4 0.51 3.8
Sidestream 0.49 2.4 0.55 3.6

Solid Fraction
Pretreated 1.1 12.5 1.3 18.9
Hydrolyzed 1.3 10.2 1.5 16.1
Fermented 1.4 10.2 1.6 16.1
Sidestream 1.4 10.5 1.6 16.6

Table 2. Digestion time (85% Bmax and 95% Bmax) for samples from the liquid and solid fraction of pretreated,
hydrolyzed, fermented material, and the bioethanol sidestream, pretreated with NED and flue gas.



Production flow analysis

12



Production flow analysis
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Production flow analysis

14



Production flow
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CONCLUSION
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 Sidestreams have high energy potentials
 Solid–liquid separation is an effective strategy for enhancing methane yields
 The methane yields from the liquid fractions were between 60–88% lower 

than those that were obtained from solid fractions. 
 The kinetics of liquid AD were more than 3 times higher
 Using liquid phase from pretreatment in downstream processes is

questionable
 Separating solids after hydrolysis is not reasonable
 Highest energy output comes from integrated bioethanol biogas production

process where stillage and solids are combined in AD
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