PROCESS for BIO NATURAL GAS PRODUCTION from FORESTRY RESIDUE

Matt Babicki*, Brian Sellars
G4 Insights Inc.
IEA Presentation
August 25, 2009
Overview

- Bio-natural gas as a meaningful bio-energy pathway
- Size, siting and production considerations
- G4 approach
- Market uses for bio-natural gas
G4 Insights Team

• Multi-disciplinary technology & commercial development
• Bio-natural gas technology under development with commercially driven focus
• Current external support by:
 – National Research Council Canada (IRAP)
 – Ethanol BC, a BC government and forest industry fund
G4 Experience

• Founders, senior management and R&D roles in QuestAir Technologies Inc.
• **Technology:** Developed and commercialized gas separation equipment for industrial gas and petro-chemical industries
Natural Gas Business

- 125 Billion GJ/yr world consumption
- Supplies ~23% of world energy requirements
 - **Electricity** → Natural gas generates 21% of all electricity
 - **Heating/combustion** → a growing, preferred fuel source
 - **Transportation** → Currently accounts for only ~ 1% of transportation fuel
- **World-wide commodity with mature and broad distribution**
 - Low transportation/distribution losses over large distances
 - Economical large-scale energy storage
 - Large & accepted infrastructure
 - Infrastructure continuing to be developed
 - Robust trading/displacement/wheeling to allocate gas to buyers
SNG & Bio-Natural Gas

- **Synthetic & bio-natural gas:**
 - Must meet gas utility defined heating values and quality specifications
 - Injected into natural gas pipelines or regional distribution network
 - Can be used by any natural gas equipment, appliance or vehicle

- **Proven methods: anaerobic digester gas, landfill gas**
 - Low-cost purification is key
 - Limited resource: estimate maximum production of 0.4 Billion GJ/yr

- **Emerging methods: biomass gasification with methanation**
 - Low-cost biomass transportation is not well developed
 - Large central plants needed for cost reasons
 → funding, permitting and time-to-market hurdles

- **New Method: G4 Bio-Natural Gas Process**
Biomass Availability

- 350 million dry tonnes/year sustainable forestry residue biomass available in US and EU
 - a ~ 7 Billion GJ/yr source of carbon neutral energy available now
 - an impressive ~15% of current US+EU natural gas use
- Does NOT include harvest for sole purpose of energy generation
- Does NOT include agricultural residues with seasonal availability
- Does NOT include regional degradation issues
Biomass Availability

• **Near-Term Challenges**
 – Difficult to secure long-term biomass supply contracts
 – Unstable and rising feedstock costs ($10-100/dry tonne)
 – Additional forestry jobs to harvest/transport residues

• **Long-Term Challenges**
 – Low-cost methods of residue harvesting & transport
 – Forest industry needs to think/act like an energy provider
 – Energy crops are a long-term investment
 – Seasonal availability & use patterns
Biomass & Energy Transport

• **Low density of biomass increases transport costs**
 →Largest factor of raw material costs
 →Distributed plant model keeps transport costs reasonable
 →Transport the ‘energy’ in existing infrastructure

• **Are forests close to pipelines?**
 →Compressor station spacing averages about 100 km
 →Utilization of existing distribution systems
 →Match the sustainable forest harvest practice area with spacing
 →Typical 60km radius biomass supply for each G4 BNG plant
 →Plant feed volumes similar to small/medium sawmill

Logical Conclusion:

- Distributed conversion plant is the most appropriate model
- Appropriate where NG use or distribution infrastructure exists
G4 BNG Process

- Proprietary process to convert biomass into Bio-Natural Gas
- Wood and wood waste is size reduced, dried and thermally vaporized
- Vapors preferentially converted to methane in hydrogen atmosphere
- Gas separation to produce BNG product and re-use other gases
- Reformer generates hydrogen required for the process
G4 BNG Process

• **Industrial Plant:**
 - Similar site considerations as current forest processing plants
 - Use all parts: cellulose, hemi-cellulose, lignin & avoid waste streams

• **Environmental:**
 - Bio-ash from inorganics in wood for redistribution back to forest
 - Carbon neutral CO₂ in flue gas
 - Process water, cooling water optional re-use
 - No contaminated liquid discharge

• **High Energy Conversion Yields**
 - Selling price: US$8 - 10/GJ with US$40 - 50/BDT wood
 (Using typical Independent Power Producer economics and mature design)
Markets

• **G4 BNG with Natural Gas Power Plants:**
 - Large fleet of existing and new power generation stations
 - Purchase “green certificates” and use pipeline gas for immediate renewable power for ANY natural gas powered plant
 - No additional risk or operational impact to power plants
 - Potential biomass heat value to electricity conversion of 40% to 50% when used in new combined cycle (NGCC) plants
 - Lowest cost, large scale production of renewable electricity
Markets

‘Renewable Premium’ Natural Gas

• Bio-Natural Gas sold by gas utility companies
 – Residential/commercial users buy premium Bio Natural Gas
 – Use with existing appliances, no need to convert

• Bio-Natural Gas for CNG vehicles
 – Existing supply distribution technology and infrastructure
 – Current: limited adoption, primarily used by fleets
 – Emerging consumer market
 → room for incentives for adoption: both $/GJ & $/gasoline equiv.
 – Mainstream CNG & dual-fuel automotive technology
Markets

Remote Energy Supply
- Remote communities, mining and forestry operations
- Total self sufficiency with high efficiency:
 - coupled with standard NG genset for CHP
 - A stream of BNG for CNG transport fuel
 - Third use of BNG for residential/commercial uses
 - Local employment for energy generation

On-site Industrial Natural Gas Displacement
- BNG is direct substitute for natural gas
 - No burner/boiler modifications required
 - No backup equipment required
 - Can be used for NG space heating, CNG forklifts and vehicles
 - Export BNG if not consumed on-site
G4 BNG - Distribution

- Current Renewable Electric Power Generation

Independent Power Producer - Renewable Electricity
G4 BNG - Distribution

- G4 BNG into pipeline for renewable power generation
Summary

G4 Bio-Natural Gas

• Nearly 15% of current NG consumed in US +EU can be displaced by renewable Bio Natural Gas with:
 – No change in technology or infrastructure
 – Additional sustainable forest-related jobs
 – No change to consumer preferences
• More can be displaced with advanced forest practices
• Low cost renewable electricity
• Most expedient way to make fleets 100% green