Biogas from Energy Crops – Preliminary Results of Biomass Storage and Pre-treatment under Northern Conditions

Jukka Rintala, Annimari Lehtomäki, Outi Ronkainen, University of Jyväskylä, Finland
Methane from Energy Crops

Selection of Crops

Crop Cultivation

Harvesting
Size Reduction
Pre-Treatment (1)

Harvest Time

Storage
- Ensiling
- Dry Storage

Pre-Treatment
(2)

Biogas Production

Post-Treatment

Storage of Digestate & Post Gasification

Methane

Heat
Electricity
Traffic Fuel

Digestate

Pre-Treatment

Harnessing

Time
Reasons for Pre-storing Biomass for Biogas Production

- Short cultivation periods, storage needed up to 8 months

- Optimal methane yields per hectare with several harvesting times (methane yield / VS, biomass production per hectare)

- Energy produced when most optimum / needed
Methods for Pre-storing Biomass

- Aiming at low CH$_4$ potential losses (VS losses (non-structural carbohydrates))
- Storage as a pre-treatment: improving methane yields and methane production rates
- Simple and low cost techniques and management
- Potentially different options (scale) for
 - farm-scale vs. centralised digesters
 - co-digesting vs. crop digesting plants
 - dry vs. wet processes
Post-storing Digested Biomass for Biogas Production

Reasons for (covered) post-storing digested biomass
- Only short periods (3-4 months) potential for land application
- No other use for the digestate than land application
- Recovery of remaining methane potential, prevent methane losses / emissions

Post-storing digested biomass
- Up to 8-9 months, sufficient capacity
- Simple and low cost structures at ambient temperatures
- Stimulate methane recovery:
 - Post-treatment before post-storage
 - Low cost passive heating systems to increase temperature
- Different options for farm-scale vs. centralised digesters and for co-digesting vs. crop digesting plants
Storage of Crop Biomass

- Traditional methods: drying, ensiling

- Drying

 High losses of organic matter, subjectivity to weather conditions, dry material not suitable for biogas production

- Ensiling: soluble carbohydrates contained in plant matter undergo lactic acid fermentation: → pH drop → Inhibition of growth of detrimental micro-organisms

- The process can be controlled by
 - Preventing the growth of all micro-organisms (e.g. acids)
 - Stimulating the growth of lactic acid bacteria (e.g. bacterial inoculum or enzymes)
Storage trials

- Storage of timothy-clover grass and rye grass as silage in bales for 3-8 months in field conditions with and without additives
- Systematic follow-up of the chemical characteristics, CH$_4$ potential and mass
- Finally, after 6-8 month storage co-digested with manure in farm digester
Storing – laboratory studies

- Grass (75 % timothy *Phleum pratense*, 25 % meadow fescue *Festuca Pratensis*), 30 % TS, VS/TS 0,9, lignin 15 % of TS, 0.23 m3CH$_4$/kgVS, 64.2 m3CH$_4$/tFW

- Stored in 5 L laboratory silos for 3 months at 20$^\circ$C, and for 6 months at 20 and 5 $^\circ$C without and with additives:
 - Formic acid
 - Enzymes
 - Xylanases and cellulases
 - Lactic acid bacteria
 - *Lactobacillus rhamsonus* and *Propionibacterium freudenreichii*
 - Mixed culture from a farm biogas reactor
Specific methane yields (per original VS)

- No additive
- Formic acid
- Enzyme
- Lactic acid bacteria
- Mixed culture

- Fresh crop
- After addition of storage additive
- After 3 months at 20°C
- After 6 months at 20°C
- After 6 months at 5°C
Storing Grass - Results

- Storage without additives led to losses of 17-39 % in methane potential.

- Most additives increased the initial methane yields (partially acting as substrate) and decreased the methane potential losses during storage.

- Without additives storage time (3-6 months) and temperature (5 -20°C) had major impacts on methane potential, but not with additives.
Pre- /Post-treatment of Energy Crops

- **Objectives:**
 - Increase methane yields or / and methane production rates:
 - in biogas digesters: 35°C, HRT 20-40 days
 - during post-storage/methanation (several months at 5-20°C)

- **Impacts:**
 - Increasing available surface area for microbial action
 - Breaking polymeric chains to more easily accessible soluble compounds
 - Promoting subsequent biodegradation
Pre-treatment Laboratory Trials

- Substrate: timothy-clover grass (also tops of sugar beets, straw)
- Physical
 - autoclaving, water incubation
- Biological
 - enzymes, composting, white-rot fungi
- Chemical
 - Alkalis (NaOH, Ca(OH)$_2$+Na$_2$CO$_3$), peracetic acid
Pre-Treatment Results

- Alkali treatments (NaOH, Ca(OH)$_2$ +Na$_2$CO$_3$)
 - 15 % increase in CH$_4$ yields
- Physical, biological, peracetic acid treatment
 - High losses of organic matter
 - No increase in methane yield

Viinikainen, T., Lehtomäki, A., Ronkainen, O. & Rintala, J. (in prep.): Effect of chemical pre-treatments on anaerobic digestion of energy crops and crop residues.