The Green Injection
- into the existing gas grid of Endinet or GTS -

Henk Kluytmans – Manager Projecten & Engineering
Rick Donders – Asset Management

4 November 2010
Agenda

• Definitions
• Study assigned by Agentschap NL
• Introduction
• Endinet and Green Gas
• Green Gas Injection
• Potential natural gas replacement
• Demand versus production
• Technical solutions
• Grid investment costs
• Conclusions
• Questions
Definitions

Biogas = gas produced by digestion of biomass, Synthetic Natural Gas or landfill gas

Green Gas = upgraded biogas that meets the properties of natural gas quality and can be injected into the existing gas grid

Distribution grid = grid operated by the regional grid operators

Transmission grid = grid operated by the national grid operator
Study assigned by Agentschap NL

“Green Gas Injection into the Natural Gas Grid – Scenario Development”

• Possibilities and grid investment costs of Green Gas Injection into:
 • 8 bar distribution grid of Endinet
 • 40 bar transmission grid of GTS

• Study performed by KEMA & Endinet
Introduction

Endinet is grid operator of the region Eindhoven and Oost-Brabant

Number of connections
- Electricity: 107,000
- Gas: 385,000
Endinet and Green Gas

- Landfill gas injection (Nuenen, 1990)
- Several new initiatives
- Endinet’s vision:
 - Long term perspective
 - Facilitate injection
 - Number of pilot projects
 - Controlled expansion
 - Conform current corporate values:
 - Safety
 - Security of supply
 - Cost effective
Green Gas Injection

• Green Gas can be injected into the existing natural gas grid

• Preconditions injection:
 • Quality must be equal to natural gas
 • Sufficient capacity current grid
 • According to current pressure ranges
Potential replacement of natural gas in the Endinet region

Yearly amount [Million m³]

<table>
<thead>
<tr>
<th>Source</th>
<th>Amount [Million m³]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manure</td>
<td>12</td>
</tr>
<tr>
<td>Biogas</td>
<td>249</td>
</tr>
<tr>
<td>Green Gas</td>
<td>124</td>
</tr>
<tr>
<td>Natural gas replacement</td>
<td>1,071</td>
</tr>
</tbody>
</table>

12%
Gas demand profile total distribution grid of Endinet

![Graph showing gas demand profile with seasonal variations](image-url)
Duration curve total distribution grid area of Endinet
Gas infrastructure
draaien en versimpelen conform dia 12?
Overproduction in supply area of Endinet
Technical solutions

Overproduction on distribution level

<table>
<thead>
<tr>
<th>No</th>
<th>Yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 bar Transmission grid</td>
<td></td>
</tr>
<tr>
<td>8 bar Distribution grid</td>
<td></td>
</tr>
</tbody>
</table>

Level

Transmission

Distribution

A1 C1 B1 B2 D1 D2 D3

Pipeline
Buffer
Connection pipeline
Transferring point
Grid investment costs - individual solutions

<table>
<thead>
<tr>
<th>Technical solution</th>
<th>Location A</th>
<th>Location B</th>
<th>Location D</th>
<th>Location H</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buffer</td>
<td>€ 200.000</td>
<td>€ 400.000</td>
<td>€ 600.000</td>
<td>€ 1,000.000</td>
</tr>
<tr>
<td>Compression, operational</td>
<td>€ 400.000</td>
<td>€ 600.000</td>
<td>€ 800.000</td>
<td>€ 1,200.000</td>
</tr>
<tr>
<td>Compression 8>40 bar</td>
<td>€ 600.000</td>
<td>€ 800.000</td>
<td>€ 1,000.000</td>
<td></td>
</tr>
<tr>
<td>Injection point transmission grid</td>
<td>€ 800.000</td>
<td>€ 1,000.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Connection pipeline 8 bar</td>
<td>€ 1,000.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Injection point distribution grid</td>
<td>€ 1,200.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pipeline 8 bar</td>
<td>€ 1,400.000</td>
<td>€ 1,600.000</td>
<td>€ 1,800.000</td>
<td>€ 2,000.000</td>
</tr>
</tbody>
</table>
Grid investment costs – individual solutions

Technical solutions

<table>
<thead>
<tr>
<th>Location</th>
<th>Buffer</th>
<th>Compression, operational</th>
<th>Compression 8>40 bar</th>
<th>Injection point transmission grid</th>
<th>Connection pipeline 8 bar</th>
<th>Injection point distribution grid</th>
<th>Pipeline 8 bar</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cumulative costs [€]

- **€ 1,400,000**
- **€ 1,200,000**
- **€ 1,000,000**
- **€ 800,000**
- **€ 600,000**
- **€ 400,000**
- **€ 200,000**
- **€ 0**
Grid investment costs – 12% natural gas replacement

- Financial worst-case scenario
 - Injection into transmission grid

- Financial realistic scenario
 - Injection into distribution grid & transferring to transmission grid

- Financial best-case scenario
 - Injection into distribution grid
Conclusions

• Potential: 12% natural gas replacement by Green Gas

• Summer: demand < production capacity
 • Particularly demand distribution grid < production capacity: use of transmission grid is necessary

• Several technical solutions to facilitate Green Gas injection

• Costs injection distribution grid << injection transmission grid
 • Minimal capacity scale necessary for injection to be cost effective

• Preferable solution injection distribution grid and transferring to transmission grid
Questions