Aims of the AD plant operator

- High and constant production
- Higher efficiency by using the products (yield)
- Lower costs
 - Optimization of the input material
 - Reasonable use of side-products
 - On farm
 - From market
Different contests, specific systems and many feeding opportunities
Indexes of biological efficiency

- Utilisation of the whole potential degradable organic matter
- Less energy expense necessary to maintain the microorganisms
- Higher concentration of CH$_4$/biogas
Efficiency/proposal for measurement

- Methane/potential fermentable organic matter (pFOM)
- pFOM fermented / pFOM added
Fodder composition

Fresh matter
 Water (humidity)

Dry matter

Anorganic substance (Ashes)
 Organisc matter (OM)

- Fermentable OM
 - Carbohydrates
 - Proteines
 - Fats

- Non fermentable OM
 - N fixed to fibre
 - Lignin
 - Fibre fixed to lignin
Knowing exactly the fodder composition

➢ Analysis in laboratory
 • Fast
 • Reliable
 • Precise

➢ Determination of all substrate components
 • Especially the fermentable and non fermentable quotes
Univerity of Bologna and BTS created a dynamic system:

- Bacterial development in the fermenter
- Kinetic degradation of all substrates
- Methane production
- Quantity and quality of the digestate
- Total efficiency of the fermentation process
Biomass under the microscope
BIOaccelerator

Structure of the cell

- Hemicellulose
- Cellulose
- Lignin

interior of the cell
Botanic composition

1: WHAT'S IN A PLANT?
A plant is not just a plant. It consists of many components. Here are the components of a corn plant. (All plants have the same components. The proportions differ from plant to plant.)

- **Starch:** 75%
- **Protein:** 9%
- **Hemicellulose:** 27.6%
- **Cellulose:** 37.4%
- **Lignin:** 18%
- **Ash/Nutrients:** 5.2%
- **Other:** 11.8%

65% of biomass is cellulose and hemicellulose.

Ingredients are returned to the soil as fertilizers.
Botanic composition
Cow Fistula

Fistula on the cow: fermentation samples directly from the rumen
A new method: Biogas fistula

- It is necessary to know the kinetic degradation of the organic matter in time

- Usually there are used pilot fermenters in laboratory
 - But it is impossible to describe the kinetic degradation

- Doubt about the reproducibility of what really happens in practice
Preparation of samples to be analysed in laboratory
A new method: Biogas fistula

Introduction of the samples into the biogas plant.

It’s possible to retrieve the bags at any time to analyse the non fermented matter.
• The first laboratory specialized in biogas in Italy
• More than 3,000 analyses of fermenters per month
 • pH, FOS/TAC
 • all kinds of acids
 • DM, oDM
 • N, Ammonium
 • Micronutrients
 • Electric conductivity
 • Redox potential
 • NDF, ADF, ADL
 • XP, starch, fat, sugar
BTS Biogas with University of Bologna
Dynamic forecast model for:

- Development of the bacterial grow
- Kinetics of degradation for every single substrate and the ration mix
- Production of methane/electric energy
- Quantity and Quality of the digestive product
- Global efficiency of the fermentation process
- Economical efficiency for the diet costs
Influence factors for the digestion:

- Retention time (TR)
 - Passing velocity (Kp)
- Constant of hourly degradation (Kd)
 - Intrinsic characteristics of the substrate
 - Treatment – exposed surface

Knowing Kp and Kd we can calculate the degraded substrate in the fermenter
Weende Method

Non fermentable matter

\(\text{pFOM} \) potentially fermentable organic matter

Own consumption of the bacteria

Potential residue gas

\(\text{FOM} \) fermented organic matter
Plant Name:
workshop bts

<table>
<thead>
<tr>
<th>V Hydrolyse [m3]:</th>
<th>Volume</th>
<th>Days</th>
<th>Specific Loading</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>Hydrolyse</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>V Fermenter [m3]:</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2850,00</td>
<td>Fermenter</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>V Post Fermenter [m3]:</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2850,00</td>
<td>Post Fermenter</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CH4 / Biogas [%]:</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>52,00</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Engine Efficiency [%]:</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>39,00</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Energy Target [MW]:</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1,00</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Energy Production

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cattle slurry 8% DM ingresso</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corn Silage med. BTS 2013 IT 33.5% DM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cornmeal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triticale Silage 30.5% DM media</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wheat Bran average N°265</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recirculate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>Total</td>
<td>Total</td>
<td>Total</td>
<td>Total</td>
<td>Total</td>
</tr>
</tbody>
</table>
Cost – optimization

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cattle slurry 8%DM ingrosso</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corn Silage med.BTS 2013 IT 33.5%DM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cornmeal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triticale Silage 30.5%DM media</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wheat Bran average N°265</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recirculate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Calculation for the TMR

<table>
<thead>
<tr>
<th>Component</th>
<th>Graph</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry Matter</td>
<td></td>
</tr>
<tr>
<td>Raw Proteins</td>
<td></td>
</tr>
<tr>
<td>NDF</td>
<td></td>
</tr>
<tr>
<td>Starch</td>
<td></td>
</tr>
<tr>
<td>Sugar</td>
<td></td>
</tr>
<tr>
<td>Lipid Fat</td>
<td></td>
</tr>
</tbody>
</table>
Fermentable Mass

Organic DM

pFOM

\[
\begin{align*}
\text{org. DM / DM} \\
\text{pot. ferm.org. DM / DM} \\
\text{ferm.org. DM for CH4-Prod. / DM} \\
\text{ferm.org. DM for bac.gr. / DM} \\
\text{n.ferm. DM / DM}
\end{align*}
\]

\[
\begin{align*}
\text{ferm.org. DM for CH4-Prod. / pot.fermb. org.DM} \\
\text{ferm.org. DM for bac.gr. / ferm. org.DM} \\
\text{org.DM n.ferm / pot.fermb. org.DM}
\end{align*}
\]
Details of the degradation

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cattle slurry 8%DM ingrasso</td>
<td></td>
</tr>
<tr>
<td>Corn Silage med.BTS 2013 IT 33.5%DM</td>
<td></td>
</tr>
<tr>
<td>Cornmeal</td>
<td></td>
</tr>
<tr>
<td>Triticale Silage 30.5%DM media</td>
<td></td>
</tr>
<tr>
<td>Wheat Bran average N°265</td>
<td></td>
</tr>
</tbody>
</table>

Products which are not enough degraded in the ration mix?
Output

<table>
<thead>
<tr>
<th>Quantity</th>
<th>% of Total Quantity</th>
<th>% of Dry Matter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dry Matter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proteine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Azote</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N ADIP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lost N-NH4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total remaining N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ashes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NDF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lignin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Remaining Bacteria</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Recirculation

Yes / No?
BIOaccelerator

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Energy Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Materiale grezzo</td>
<td></td>
</tr>
<tr>
<td>Expected Energy / Day</td>
<td>kWh</td>
</tr>
<tr>
<td>Energy Target / Day</td>
<td>kWh</td>
</tr>
<tr>
<td>ferm.org. DM for CH4-Prod / pot.fermb. org.DM</td>
<td></td>
</tr>
<tr>
<td>ferm.org. DM for bac.gr. / ferm. org.DM</td>
<td></td>
</tr>
<tr>
<td>org.DM n.ferm / pot.fermb. org.DM</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Energy Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bioaccelerator R</td>
<td></td>
</tr>
<tr>
<td>Expected Energy / Day</td>
<td>kWh</td>
</tr>
<tr>
<td>Energy Target / Day</td>
<td>kWh</td>
</tr>
<tr>
<td>ferm.org. DM for CH4-Prod / pot.fermb. org.DM</td>
<td></td>
</tr>
<tr>
<td>ferm.org. DM for bac.gr. / ferm. org.DM</td>
<td></td>
</tr>
<tr>
<td>org.DM n.ferm / pot.fermb. org.DM</td>
<td></td>
</tr>
</tbody>
</table>
Thank you for your attention!

Michael Niederbacher
E m.niederbacher@bts-biogas.com
I www.bts-biogas.com
Contacts

Italy
Headquarters
BTS Biogas Srl/GmbH
Via San Lorenzo, 34 St. Lorenznerstr.
I-39031
Brunico/Bruneck (BZ)
T +39 0474 37 01 19
F +39 0474 55 28 36

Laboratory, Service & Logistic, International Training Centre
BTS Biogas Srl
Via Vento, 9
I-37010 Affi (VR)
T +39 0454 85 42 05

UK
Headquarters
BTS Biogas Ltd
Unit 2 Lotherton Court
Lotherton Way
Garforth
Leeds
LS25 2JY
T +44 (0)113 345 3140

Service & Logistic
BTS Biogas Ltd
Unit 2 Lotherton Court
Lotherton Way
Garforth
Leeds
LS25 2JY
T +44 (0)113 345 3140

Germany
Headquarters
BTS Biogas GmbH
Kufsteiner Str. 35
D-83064 Raubling
T +49 (0) 8063 20 03 31-1
F +49 (0) 8063 20 03 31-6

France
Headquarters
BTS Biogaz SAS
12 avenue des Saules – BP61
69922 Oullins Cedex
T +33 (0)4 72 68 80 49
F +33 (0)4 72 36 30 69

Sales Office
BTS Biogas SAS
1 bis rue d’ouessant - BP 96241
35762 Saint Gregoire
T +33 (0)2 99250331

Japan
Headquarters
BTS Biogas K.K.
6-10-1 Roppongi,
Minato-ku, Tokyo
T 050 5809 8399

Canada
Sales Office
BTS Biogas
480 University Avenue, Suite 1500
Toronto, ON, M5G 1V2
T +1 (416) 598-7105
F +1 (416) 598-1840

www.bts-biogas.com
info@bts-biogas.com