

Sustainable Resource Management and Energy from Organic Wastes

Charles Banks, Faculty of Engineering and the Environment, University of Southampton. Southampton, UKHo Kang, Chungnam National University, 220 Gung-Dong, Yuseong-Gu, Daejeon, 305-764, Republic of Korea

Bernadette McCabe, National Centre for Engineering in Agriculture, University of Southern Queensland, Toowoomba, Queensland, Australia

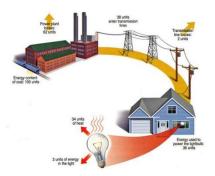
What is waste?

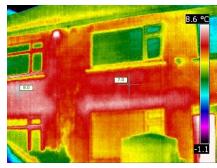
Agricultural

- Poultry and livestock manure, and residual materials in liquid or solid form generated from the production and marketing of poultry, livestock or fur-bearing animals; also includes grain, vegetable, and fruit harvest residue (US EPA)
- Agricultural waste is waste produced as a result of various agricultural operations. It includes manure and other wastes from farms, poultry houses and slaughterhouses; harvest waste; fertilizer run- off from fields; pesticides that enter into water, air or soils; and salt and silt drained from fields. (OECD)

General

- An object the holder discards, intends to discard or is required to discard (EU)
- Anything you own, or your business produces, and you wish to get rid of. (Defra)
- An item for which the owner no longer has any use and which can be discarded by its current owner without any perceived loss. (i.e. the item has no current value)




Less obvious waste

Inefficiency in energy production and use

power and fuel

- Waste of natural resources
 - Water
 - Minerals
 - materials

Is waste biomass waste or is it just resource diversion?

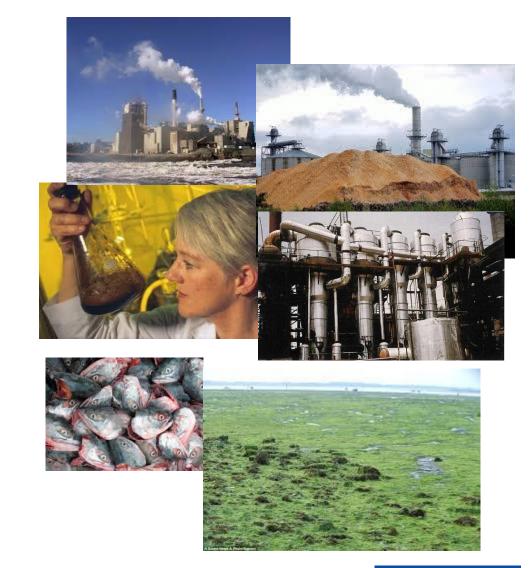
- Some examples
 - Sugar beet pulp
 - Potatoes
 - Vegetable trimmings
 - Brewers and distillers grains

All of these had value as animal feeds and have been diverted to biogas production – not waste but marketable commodities – subsidies distort markets

Field residues – wastes?

• Cereal straws -

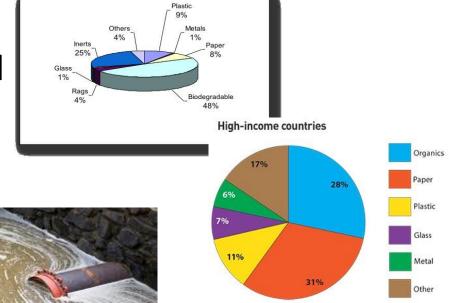
• Vegetative stalks



Other 'waste' biomass sources

- Forest industry solids process liquors
- Marine

seaweeds fish and shell fish



Urban wastes

Commercial and industrial

Domestic and municipal

• Wastewater

IEA Bioenergy Conference 2015

IEA Bioenergy

Waste biomass classification

DRY

WET

Recovery options

Combustion

Pyrolysis

Gasification

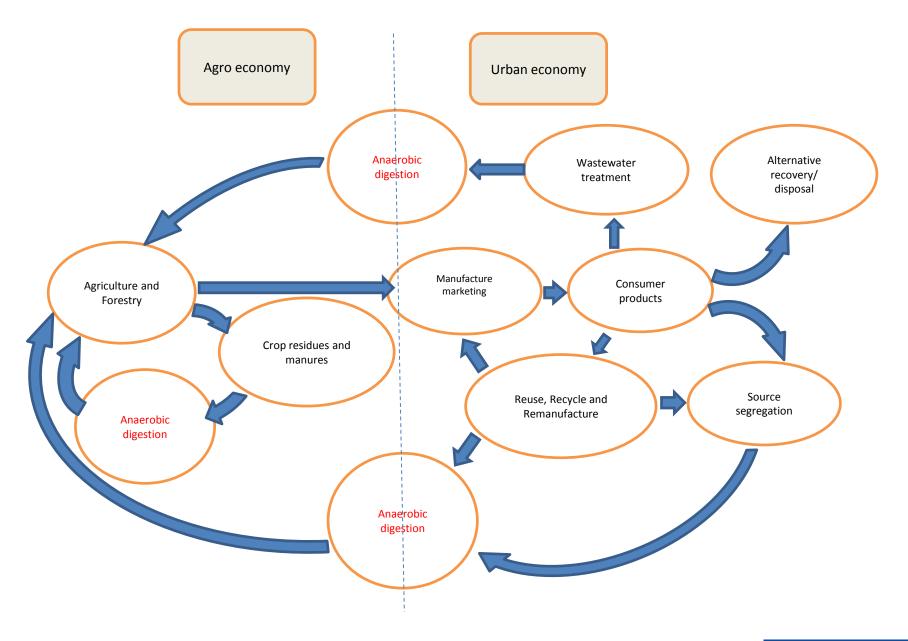
Advanced thermal

Recovery options Fermentation Anaerobic digestion

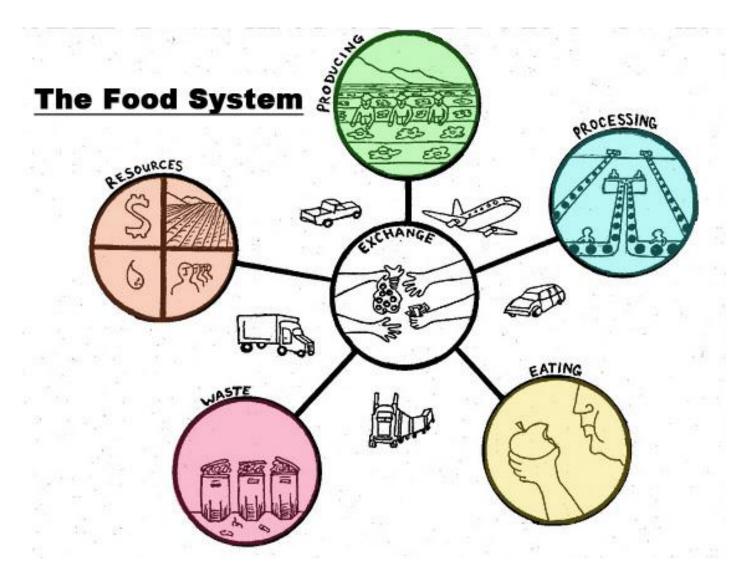
So what really is 'waste' biomass?

- Animal slurry and manures
- Inedible post harvest food residues
- Non recyclable municipal, commercial and industrial 'waste'
- I'm willing to add more to the list but you need to justify it

????????


Contribution of biogas technology

- Renewable energy
- Greenhouse gas emissions
- Waste management
- Environmental



Achieving the circular economy for organics is not that simple

Renewable energy

Grid injection – biomethane from biogas is compatible with natural gas

CHP- potential has been demonstrated at all scales with a market stimulated by feed in tariffs

Vehicle fuel – can be coupled to CNG vehicle growth, about 25% worldwide

Heating and cooling – local application or for DCH or community projects

Reduction in GHG

- Savings in tonnes CO₂ per tonne ww processed)
 - cattle slurry:
 - 0.24 t fossil fuel displacement by using biogas as fuel
 - 0.024 t prevention of fugitive emissions from tank storage
 - Food waste:

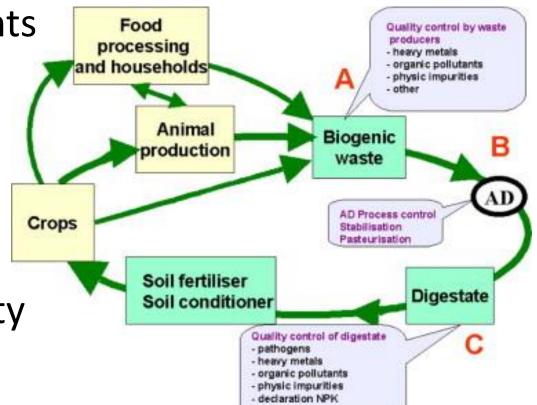
0.74t CO₂eq assuming half of the methane potential from landfill is prevented

0.17t from electricity generated (at 35% efficiency)

0.057 t from savings over fertiliser produced using fossil fuels

Waste management

- Landfill Directive
 - Municipal solid waste
 - generation 400 kg person⁻¹ y⁻¹
 - 60% organic



- Reduce biodegradable waste going to landfill to
 35% of 1995 levels by 2014
- Many of these wastes have a high moisture content, making anaerobic digestion a good choice for energy recovery (e.g. UK 50kg person⁻¹ y⁻¹ food waste)

Environmental contribution

- Recycling of nutrients
- Returns organic matter to land
- Helps in resource recovery
- Improves biosecurity

J.B. Holm-Nielsen et al (2009) Bioresource

other

Technology , 100, 5478–5484

IEA Bioenergy Conference 2015

IEA Bioenergy

Drivers

- Biogas can deliver many benefits, but not necessarily all of them simultaneously!
- Future direction will still depend on the drivers in place
 - Subsidies
 - Penalties
 - Regulations

 These drivers are not uniform and have not necessarily been put in place with sustainability as a major consideration

Future drivers

- Capital cost subsidy for schemes
 showing environmental benefit
- Consider marginal abatement costs for CO₂ in promoting manure digestion schemes
- Reward improved performance efficiency based on energy balance and sustainability criteria.
- Support of the infra-structure to capture wet biodegradable waste in urban environments

Some examples: Australia

Biogas potential

 Organic waste from domestic, industrial and agricultural industries has the potential to produce around 650 megawatts of electricity....that's enough to power almost one million Australian homes



Meat and dairy

- Pork industry
- Dairy industry
- Poultry industry
- Beef cattle feedlots
- Red meat processing industry

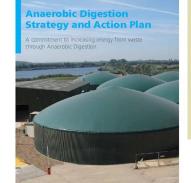
Livestock industries in Australia generate about 25 million tonnes of waste each year, with disposal costing around \$750 million annually.

Manure from livestock industries accounts for 22 Mt of carbon dioxide equivalents

Covered anaerobic lagoons are the preferred technology for agricultural industries.

Korea

- Source segregated food waste since 2005
- Volume levy introduced in 2011 resulted in 12% reduction
- New concepts for treatment as high moisture content and high proportion of fermented food
- 30% non repayable grant for anaerobic digestion
- Preferred use of biogas is grid injection or vehicle fuel



UK

- Strong support for AD
- Subsidies based on energy output ROC, FIT & RHI
- Encouraged agricultural reuse
- Discouraged energy crop digestion
- High gate fees for waste act as further incentive
- Failed to encourage small scale farm digestion
- Failed to provide an integrated waste management infrastructure to support new technology
- Failed to provide a platform for the sustainable growth of the biogas industry

Accelerating the Uptake of Anaerobic Digestion in England: an Implementation Plan

Concluding remarks

- Biogas remains the only technology at market place which can take wet heterogeneous 'waste' biomass and produce energy, retain a proportion of the organic matter and potebtially recycle farm nutrients
- It is currently an expensive technology
- Can we be more innovative in both the way we apply it and the drivers to permit its sustainable growth?

Thanks to the many who support our work

Southampton

