A Perspective on Algae Biogas

A perspective on algal biogas

Jerry D MURPHY Bernhard DROSG Eoin ALLEN Jacqueline JERNEY Ao XIA Christiane HERRMANN

SUMMARY

MaREI

Algae are suggested as a biomass source with significant growth rates, which may be cultivated in the ocean (seaweed) or on marginal land (microalgae). Biogas is suggested as a beneficial route to sustainable energy; however the scientific literature on algal biogas is relatively sparse. This report comprises a review of the literature and provides a state of the art in algal biogas and is aimed at an audience of academics and energy policy makers. It was produced by IEA Bioenergy Task 37 which addresses the challenges related to the economic and environmental sustainability of biogas production and utilisation.

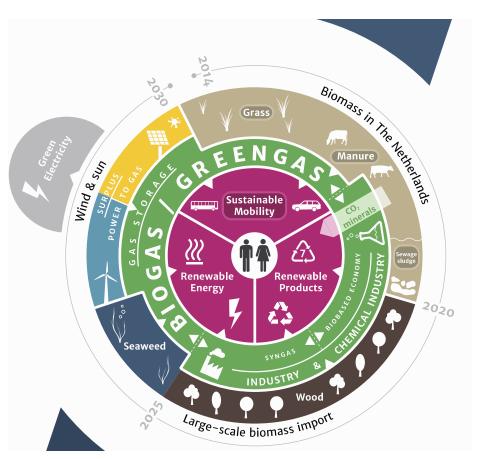
Jerry D Murphy, Bernhard Drosg, Eoin Allen, Jacqueline Jerney, Ao Xia, Christiane Herrmann International Energy Agency Bioenergy Conference Berlin, Germany 27 & 28 October 2015

Energy is not all about electricity

Table 1 Forecasted final energy consumption in Ireland in 2020. Adapted from¹¹.

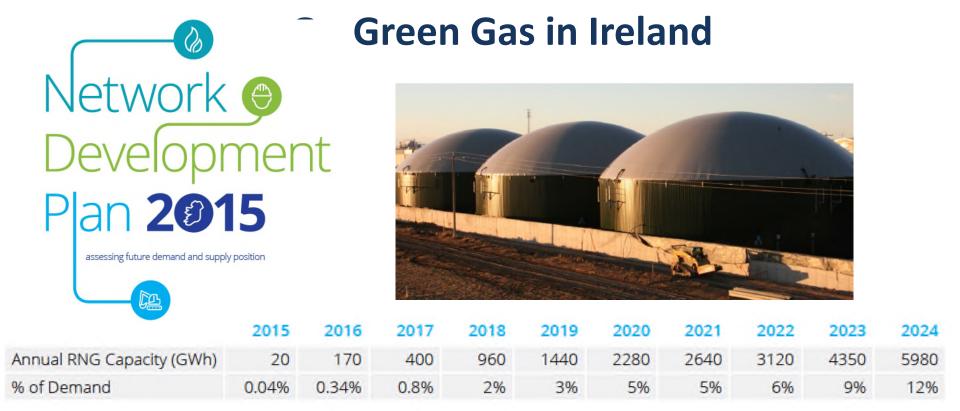
	PJ	% total
Electricity	124	21.5
Thermal	223	38.9
Transport (road and rail)	188	32.8
Other transport (not covered by RES-T)	39	6.8
Total	574	100

Directive 2009/28/EC (Renewable Energy Directive) •Share of renewable energy sources in transport (RES-T) by 2020 at least 10%

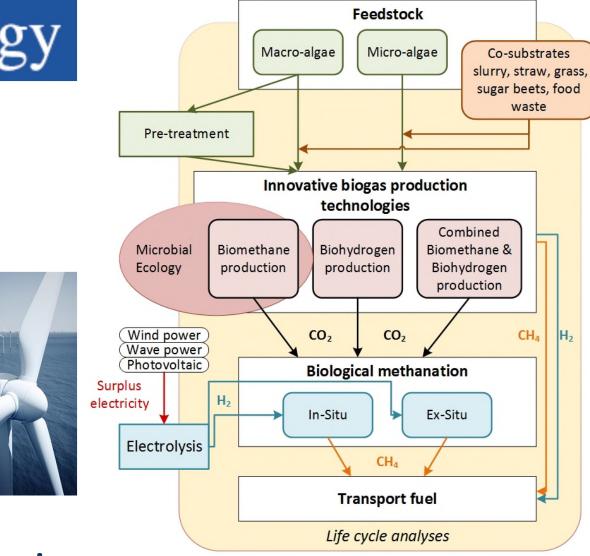

•The share of biofuels from cereal and other starch rich crops, sugar and oil crops limited to 7% as of April 2015.

•Biofuels (from (1) grasses (2) algae, municipal solid waste, manures and residues) and (3) gaseous fuels from non biological origin shall be considered at 2 times energy content.

•Also require Green Energy in Industry (FDI) and heating



Green (Renewable) Gas


6 European gas grids have committed to 100% green gas in the gas grid by 2050

[©]MaREI

Major demand for Green Gas is FDI..Factories of the future will use green gas

Renewable Gas from marine sources

MaREI

Seaweed as a source of renewable gas

(1) Selection of feedstock Seaweed species Harvest date (2) Pre-treatment and storage Washing / Thermochemical Mechanical Thermal Ensiling wilting pretreatment pretreatment pretreatment (3) Co-digestion Sugar beets Seaweed Grass silage + Slurry Straw (4) Comparison of biogas production systems Microbial Biomethane Biohydrogen Combined Biomethane & Ecology Biohydrogen production production production (5) Optimal operating parameters for long-term continuous operation

Organic loading rate Hydraulic retention time Of digestate

Algal blooms: Green seaweed, Ulva lactuca

^OMaREI

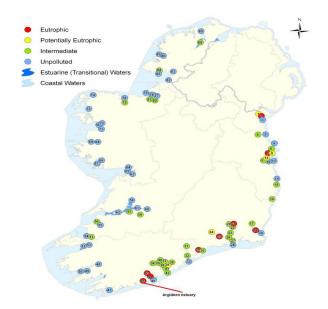
Waste Management 33 (2013) 2425-2433

Contents lists available at SciVerse ScienceDirect

Waste Management

journal homepage: www.elsevier.com/locate/wasman

The potential of algae blooms to produce renewable gaseous fuel



E. Allen^a, J. Browne^a, S. Hynes^a, J.D. Murphy^{a,b,*}

^a Environmental Research Institute, University College Cork, Cork, Ireland ^b Department of Civil and Environmental Engineering, University College Cork, Cork, Ireland

Green Seaweed

10,000 t DS/a arise in Argideen,

Sufficient to power 265 cars

100,000 t DS/a arise in Lannion Bay, Brittany

Substrate	BMP yield (L CH ₄ kg ⁻¹ VS)	C:N ratio	Increased yield in co- digestion
Slurry	136	19.8	
Dried <i>U.lactuca</i>	226	7.1	
Fresh <i>U.lactuca</i>	205	9.1	
<u>Co-digestion of L</u>	J. lactuca:		\frown
75% Fresh	220	11.8	+ 17.0%
50% Fresh	200	14.5	+ 17.0%
25% Fresh	183	17.1	+ 19.6%
75% Dried	210	10.3	+ 3.4%
50% Dried	193	13.5	+ 6.7%
25% Dried	186	16.6	+ 17.7%

Batch mono- and codigestion of seaweed with slurry

Co-digestion of fresh and dried U. lactuca with dairy slurry in BMP tests: ratio of 25%, 50% and 75% seaweed (VS)

[©]MaREI

Bioresource Technology 170 (2014) 436-444

Contents lists available at ScienceDirect

Bioresource Technology

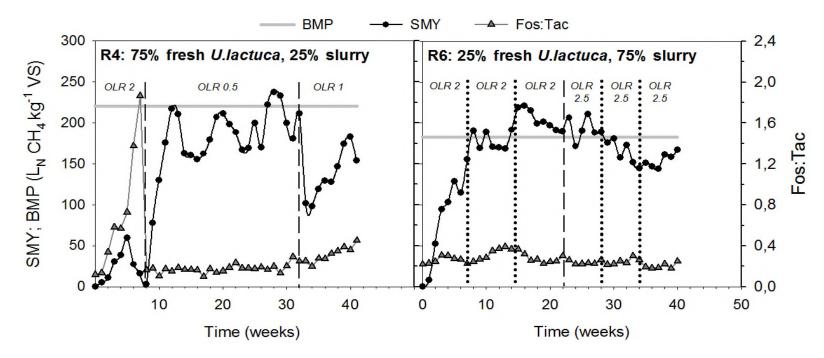
journal homepage: www.elsevier.com/locate/biortech

Investigation of the optimal percentage of green seaweed that may be co-digested with dairy slurry to produce gaseous biofuel

Eoin Allen^a, David M. Wall^a, Christiane Herrmann^a, Jerry D. Murphy^{a,b,*}

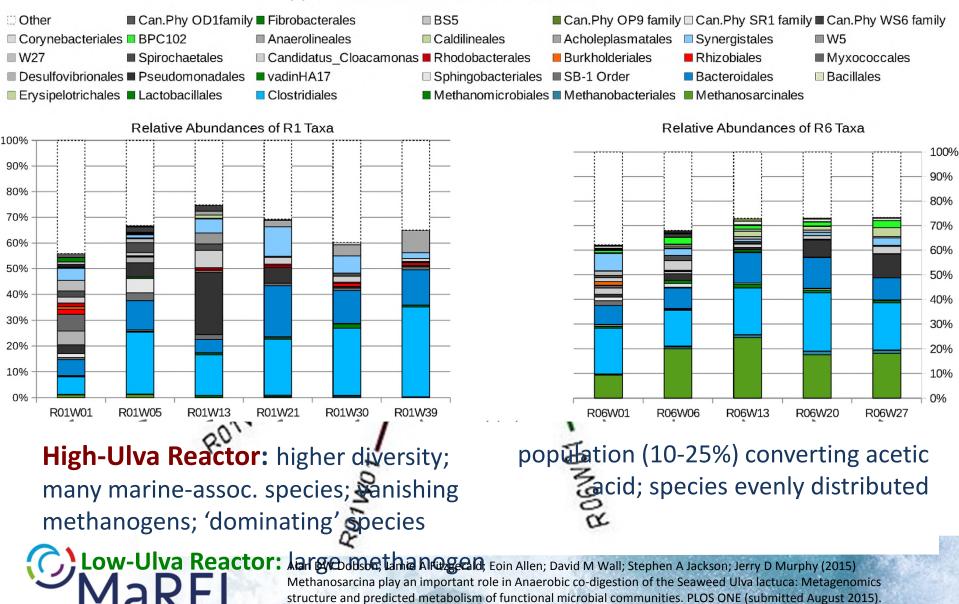
^a Environmental Research Institute, University College Cork, Lee Road, Cork, Ireland

^b School of Engineering, University College Cork, Cork, Ireland


Higher Seaweed Input

Higher Dairy Slurry Input

Long term co-digestion of Seaweed & Slurry



- > optimum mix: 25% fresh *U. lactuca* and 75% dairy slurry by VS content
- levels in excess of 75% U. lactuca are not recommended
- optimum loading rate: 2.5 kg VS m⁻³ d⁻¹

[©]MaREI

Taxonomy of Ulva Digesters

(A) Relative Abundances of Reactor Communities

Energy Yield of brown seaweeds

Energy xxx (2015) 1-9

What is the gross energy yield of third generation gaseous biofuel sourced from seaweed?

Eoin Allen^a, David M. Wall^a, Christiane Herrmann^a, Ao Xia^a, Jerry D. Murphy^{a, b, *}

^a Environmental Research Institute, University College Cork, Lee Road, Cork, Ireland

^b School of Engineering, University College Cork, Cork, Ireland

Brown Seaweed in Roaring Water Bay

Ascophyllum nodosum

Saccharina latissima

Fucus serratus

Substrate	BMP yield	Theoretical	Theoretical	Biod gradal. lity	Specific
	(L CH ₄ kg VS ⁻¹)	composition of	yield (L CH4	index	yield (m ³
		biogas (CH ₄ %)	kg VS ⁻¹)		CH ₄ t ⁻¹ wwt)
A. nodosum	166.3 ^{bc} <u>+</u> 20	53	488	0.34	32.3
H. elongate	260.9 ^f <u>+</u> 2.05	36	334	0.78	21.1
L. digitata	218.0 ^{de} <u>+</u> 4.14	53	479	0.46	22.5
F. spiralis	235.2 ^{ef} <u>+</u> 9.43	55	540	0.44	32.7
F. serratus	101.7ª <u>+</u> 9.37	54	532	0.19	13.5
F. vesiclosus	126.3 ^{ab} <u>+</u> 11.38	37	249	0.51	19.4
S. polyschides	263.3 ^f <u>+</u> 4.23	48	386	0.68	34.5
S. latissima	341.7 ^g <u>+</u> 36.40	50	422	0.81	34.5
A. esculenta	226.0 ^{def} <u>+</u> 5.66	53	474	0.48	26.9
U. lactuca	190.1 ^{cd} + 3.10	48	465	0.41	20.9
Cellulose	357.4 ^g <u>+</u> 15.20	-	414	0.86	-

Specific methane yields of Seaweed

Different superscript letters abcdet Indicate significant differences between BMP yield means of substrates (P < b conditioned and between BMP sield means of substrates (P < b conditioned and between BMP sield means of substrates (P < b conditioned and between BMP sield means of substrates (P < b conditioned and between BMP sield means of substrates (P < b conditioned and between BMP sield means of substrates (P < b conditioned and between BMP sield means of substrates (P < b conditioned and between BMP sield means of substrates (P < b conditioned and between BMP sield means of substrates (P < b conditioned and between BMP sield means of substrates (P < b conditioned and between BMP sield means of substrates (P < b conditioned and between BMP sield means of substrates (P < b conditioned and between BMP sield means of substrates (P < b conditioned and between BMP sield means of substrates (P < b conditioned and between BMP sield means of substrates (P < b conditioned and between BMP sield means of substrates (P < b conditioned and between BMP sield means of substrates (P < b conditioned and between BMP sield means of substrates (P < b conditioned and between BMP sield means of substrates (P < b conditioned and between BMP sield means of substrates (P < b conditioned and between BMP sield means of substrates (P < b conditioned and between BMP sield means of substrates (P < b conditioned and between BMP sield means of substrates (P < b conditioned and between BMP sield means of substrates (P < b conditioned and between BMP sield means of substrates (P < b conditioned and between BMP sield means of substrates (P < b conditioned and between BMP sield means of substrates (P < b conditioned and between BMP sield means of substrates (P < b conditioned and between BMP sield means of substrates (P < b conditioned and between BMP sield means of substrates (P < b conditioned and between BMP sield means of substrates (P < b conditioned and between BMP sield means of substrates (P < b conditioned and between BMP sield means

wet weight.

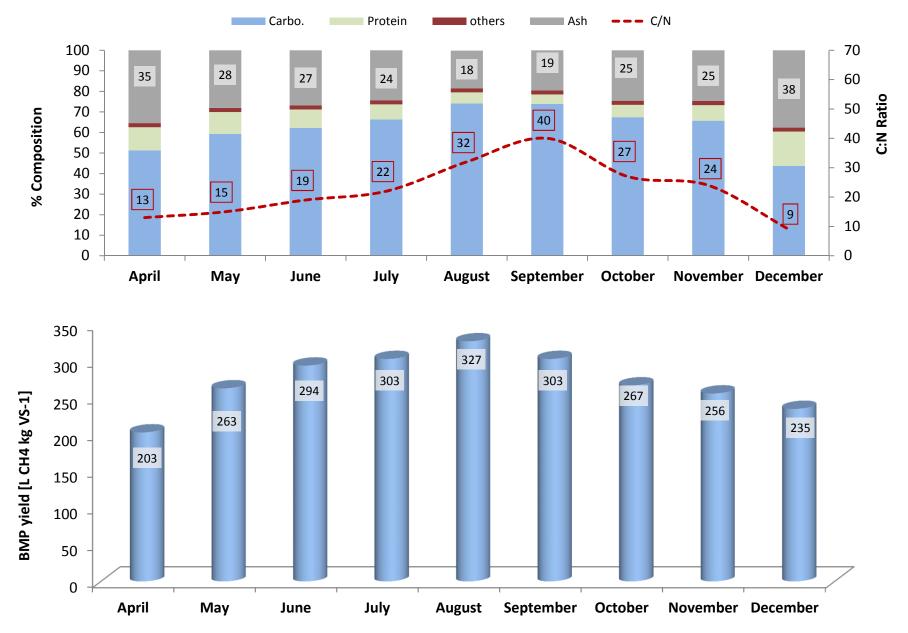
Table 2. Biomethane production for seaweed using results of BMP analysis and theoretical analysis.

Energy yield per hectare of Seaweed

Substrate	Yield (harvest)		Biomethane yiek	Biomethane yield	Gross energy
	t TS ha ⁻¹ yr ⁻¹ (*t VS ha ⁻¹ yr ⁻¹)	t wwt ha ⁻¹ yr ⁻	$m^3 CH_4 t^{-1} ww$	$m^3 ha^{-1} yr^{-1}$	$GJ ha^{-1} yr^{-1}$
L. digitata	5.0 ^a	35.2	22.5	792	28
S. polyschides	22.5 ^b	147.5	34.5	5090	181
S. latissima	30.0 ^{*c}	297.3	34.5	10,260	365
A. esculenta	36.0* ^d	302.2	26.9	8130	289
U. lactuca	45.0 ^e	249.6	20.9	5216	186
L. hyperborea	30.0–90.0 ^f			6630–19,890	239-716
L. japonica	31.0 ^{*c} -80.0 ^{*g}			8060-20,800	290-749
M. pyrifera	34.0 ^{*d} -50.0 ^{*h}			13,260-19,500	477-702

Table 6. Best and worst case energy balances for grass and willow biomethane (values expressed in GJ/ha/a).						
	Worst case		Best	Case		
	Gross	Net	Gross	Net		

Willow biomethane	95.3	82.7	130.6	116.7
Grass biomethane	122	77	163	122


Seasonal variation in chemical composition (L. digitata)

Proximate Analysis Ultimate Analysis										
	MC %	TS %	VS %	VS% TS	Ash %	C %	Н%	N %	0 %	C:N
January	89	11	7	61	39	26	3	4	28	7
February	89	11	7	64	36	26	4	4	30	7
March	90	10	6	67	33	30	4	4	29	8
April	86	14	9	65	35	30	4	2	28	13
May	88	12	9	73	28	32	5	2	33	15
June	86	14	10	73	27	34	5	2	32	19
July	86	14	11	77	24	33	5	2	37	22
August	80	20	16	82	18	37	6	1	38	32
September	81	19	16	82	19	37	5	1	39	40
October	84	16	12	76	25	33	5	1	37	27
November	85	15	11	75	25	37	5	2	32	24
December	92	8	5	60	38	31	4	3	21	9

[©]MaREI

Muhammad, R.T., Ao, X., Murphy, J.D. (2015). Seasonal variation and biomethane potential of Irish brown seaweeds, *Bioresource Technology* to be submitted Nov, 2015

Seasonal variation in biochemical composition L. digitata

Integrated aquaculture

Multi-trophic

Aquaculture contributed 24 million tonnes of algae in 2012

Aquaculture contributed 66.6 million tonnes of fish in 2012, 42 % of global production.

Carbon footprint is 10 times less than for beef per unit of energy in food

Integrated multi-trophic aquaculture can reduce pollution through co-culture of seaweed and mussels that utilise waste disposed from fish.

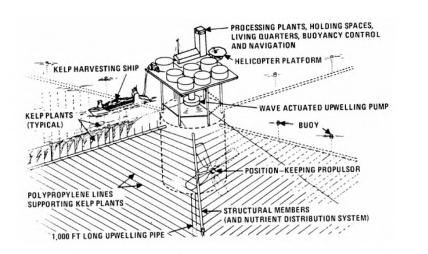
A model is investigated which would provide 1.25% of energy in transport in the EU from seaweed. This would involve annual production of 168Mt of seaweed (in excess of present world harvest) integrated with 13Mt of farmed salmon.

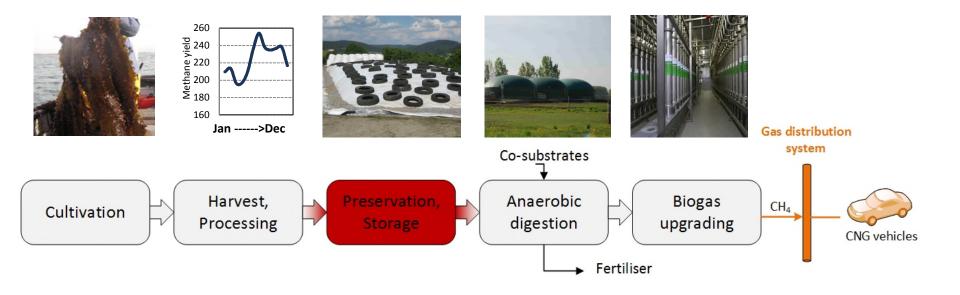
The model proposes 2603 anaerobic digesters, each treating 64,500 t/a of *Saccharina latissima* in coastal digesters

[©]MaREI

JACOB, A., XIA, A., GUNNING, D., BURNELL, G., MURPHY, J.D., Is it beneficial to associate a seaweed biofuel industry with Integrated Multi-trophic Aquaculture? International Conference on Environmental Science and Development (submitted)

Cultivating Seaweed




Figure 1. Conceptual design of 405 ha (1,000 acre) ocean food and energy farm unit. (Leese 1976) Source: David Chynoweth.

Position adjacent to fish farms Increased yields of seaweed as compared to pristine waters Clean water of excess nutrients Harvest when yield is highest

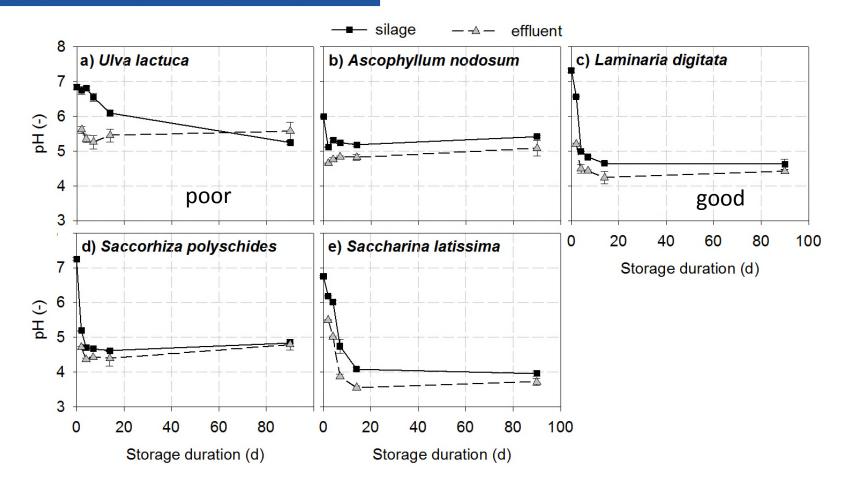
[©]MaREI

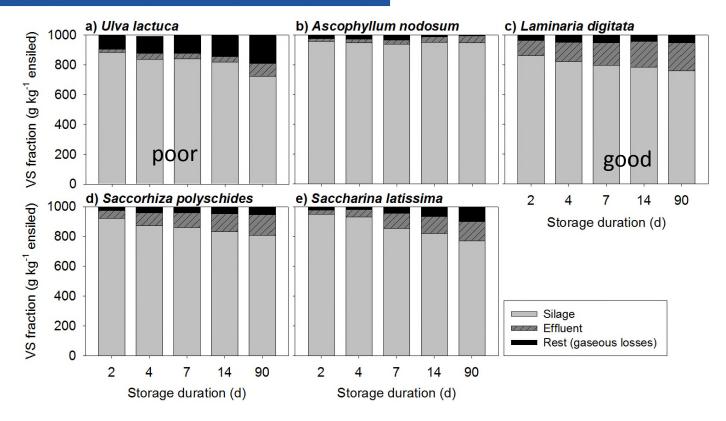
Ensiling of seaweed- Background

Ensiling of seaweed

Experimental approach:

- Ensiling of 5 seaweed species: U. lactuca, A. nodosum, L. digitata, S. polyschides, S. latissima
- Ensiling in 1-Litre lab scale silos, collection of silage effluent
- Time course experiments: storage duration 2, 4, 7, 14, 90 days at 20°C
- Analyses of ensilability, products of silage fermentation, counts of lactic acid bacteria, biomethane potential





Ensiling of seaweed- Results

Ensiling of macro-algae - Results

- Gaseous storage losses 0.3 19% after 90 days of storage, dependent on seaweed species
- Large amounts of effluent released up to 28% of the ensiled biomass (FM) after 90 days of storage

[©]MaREI

Ensiling of seaweed - *Results*

Seaweed species	Storage	BMP yield (L kg ⁻¹ VS _{added})	BMP yield (L kg ⁻¹ VS _{orig})
U. lactuca	Fresh	247.2 ^{gh}	247.2 ^c
	Silage	314.1 ^{de}	255.8 ^{cd}
	Effluent	220.3 ^{hi}	
A. nodosum	Fresh	185.7 ⁱ	185.7 ^e
	Silage	239.3 ^{gh}	236.7 ^d
	Effluent	218.3 ^{hi}	
L. digitata	Fresh	340.8 ^{bcd}	340.8 ^{ab}
	Silage	371.4 ^b	353.8 ^{ab}
	Effluent	376.1 ^b	
S. polyschides	Fresh	358.8 ^{bc}	358.8ª
	Silage	294.9 ^{ef}	276.8 ^c
	Effluent	273.1 ^{fg}	
S. latissima	Fresh	329.5 ^{cde}	329.5 ^b
	Silage	353.4 ^{bc}	329.8 ^b
	Effluent	422.5ª	

- No losses in methane yield occurred during 90 day storage for 4 of 5 seaweed species
- Collection and use of silage effluent is imperative to avoid methane losses

Bioresource Technology 196 (2015) 301-313

Bioresource Technology

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/biortech

Ensiling of seaweed for a seaweed biofuel industry

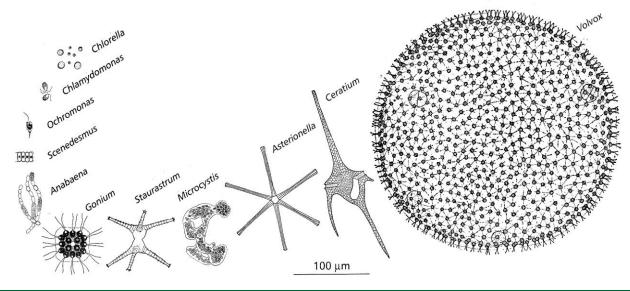
BIORESOURCE

Christiane Herrmann^a, Jamie FitzGerald^a, Richard O'Shea^a, Ao Xia^a, Pádraig O'Kiely^b, Jerry D. Murphy^{a,*}

^a Science Foundation Ireland (SFI), Marine Renewable Energy Ireland (MaREI), Environmental Research Institute, School of Engineering, University College Cork, Cork, Ireland ^b Teagasc Animal & Grassland Research and Innovation Centre, Grange, Dunsany, Co. Meath, Ireland

bioenergy2020+

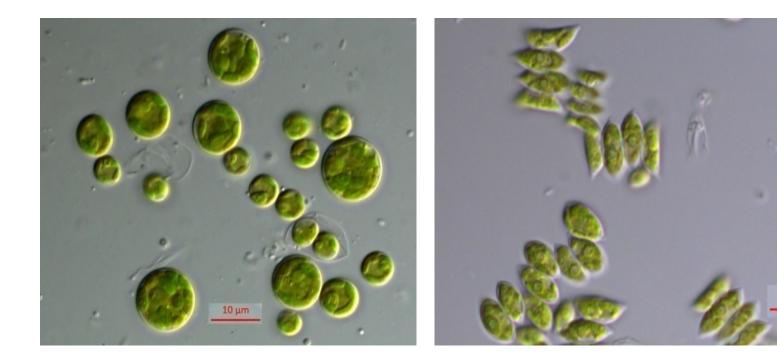
Microalgal biogas



bioenergy2020+

What are microalgae?

- ... are the precursors of higher land plants
- ... the main reason for present oxygen levels in the atmosphere
- ... due to oxygenic photosynthesis
- extremely diverse group



bioenergy2020+

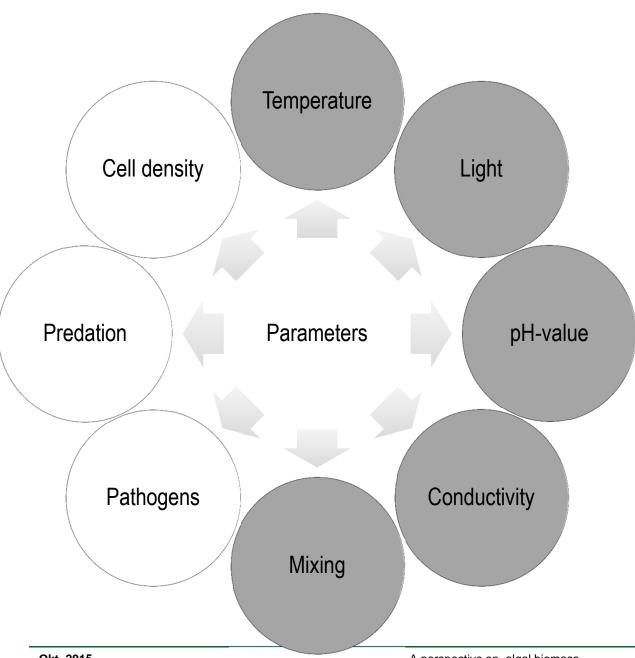
10 µm

Common strains

Chlorella sp.

Scenedesmus sp.

bio**energy**2020+


Cultivation systems

Open systems

Closed systems

bioenergy2020+

Relevant abiotic (filled spheres) and biotic (empty spheres) parameters for microalgae cultivation

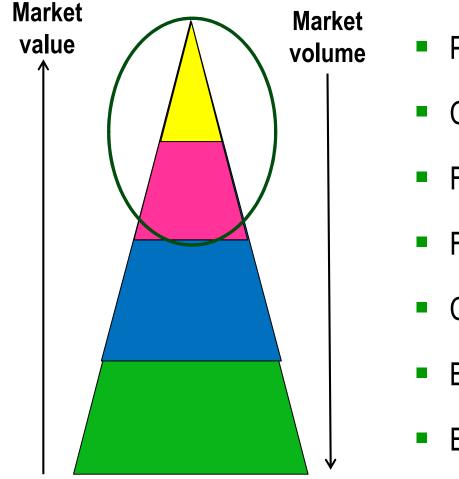
Challenges in cultivation: **Photoinhibition Photolimitation** Oxygeninhibition

Estimated world algae biomass production

Algae	Production (t dry matter/year)
Spirulina	10,000
Chlorella	4,000
Dunaliella	1,000
Haematococcus	200

<u>Source:</u> Benemann, 2013, *Microalgae for biofuels and animal feeds*. Energies, 6(11), 5869-5886.

Current Market prices of algal biomass



Micro-algae	Main Producers	Application and product	Price [€]
<i>Spirulina</i> sp.	China, India, USA, Myanmar, Japan	Human nutrition Animal nutrition Cosmetics	36 kg⁻¹
Chlorella sp.	Taiwan, Germany, Japan	Human nutrition Cosmetics	36 kg⁻¹
		Aquaculture	50 L ⁻¹
Dunaliella salina	Australia, Israel, USA, Japan	Human nutrition Cosmetics ß-carotene	215 - 2150 kg ⁻¹
Aphanizomenon flos- aquae	USA	Human nutrition	
Haematococcus pluvialis	USA, India, Israel	Aquaculture	50 L ⁻¹
		Astaxanthin	7150 kg ⁻¹

bioenergy2020+

Current algae markets

- Pharmaceutical products
- Cosmetics
- Food additives
- Feed additives
- Chemicals
- Bulk chemicals
- Energy

A perspective on algal biomass

IEA Bioenergy

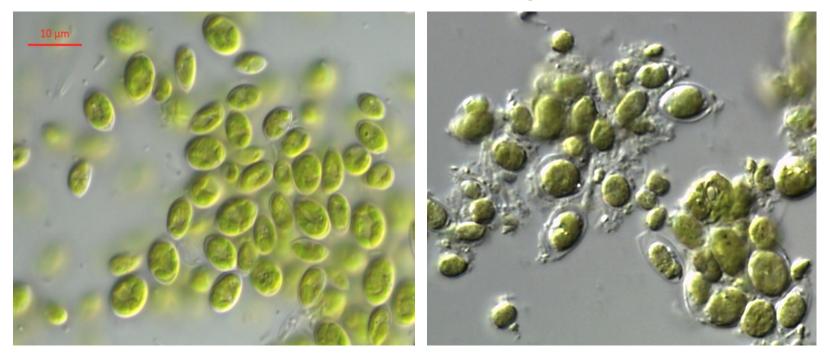
Biogas as conversion technology

Advantages:

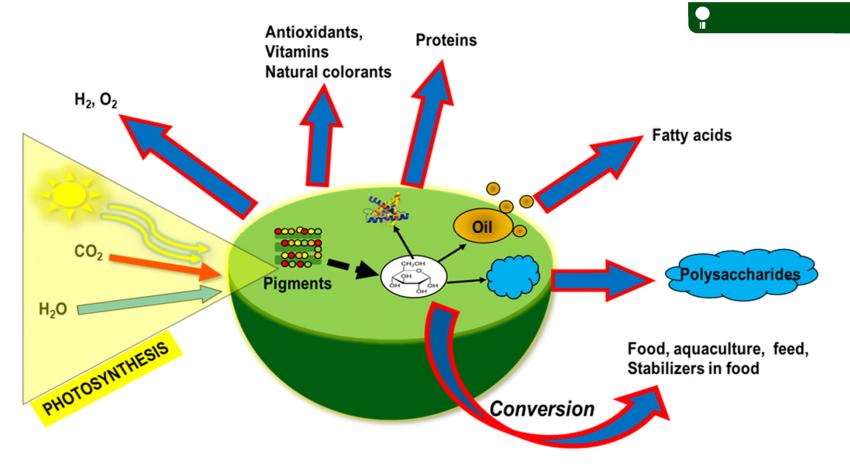
- No pure cultures necessary (cheaper production)
- No specific product needs to be produced (e.g. Triglycerides in biodiesel
- Suitable as well for entire algal biomass or residue after extraction of high value product

Disadvantages:

- Some algae have thick cell walls (especially robust strains)
 → pretreatment necessary
- High protein content can lead to ammonia inhibition
 - \rightarrow dilution


TULLN

bioenergy2020+


Pretreatment of microalgae

Chlorella vulgaris before (left) and after (right) ultrasound pre-treatment

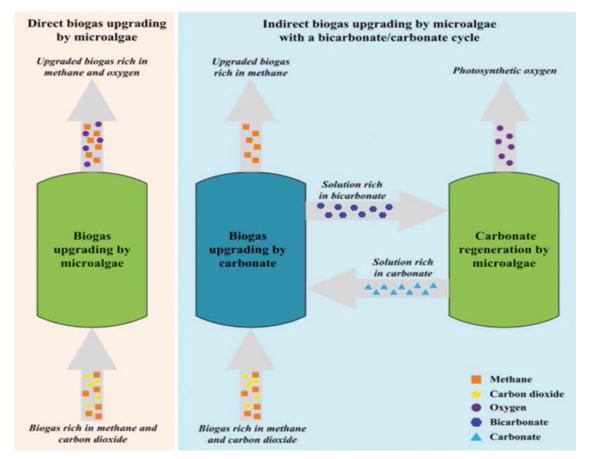
A perspective on algal biomass

A more probable approach – The microalgae biorefinery

 \rightarrow Residues of microalgae are treated in a biogas plant

bioenergy2020+

FA


TULLN

Further synergies of microalgae and biogas

- Digestate utilisation
- → Digestate from biogas plants is suitable as nutrient media for algae (at least for some strains)
- Utilisation of CO₂
- → Flue gas from combustion of biogas has a comparable high CO₂content
- \rightarrow CO₂-rich offgas from biogas upgrading
- Utilisation of waste heat

Use of micro-algae to upgrade biogas

TULLN

 \rightarrow Niche applications such as use of micro-algae to biogas upgrading

Conclusions

Seaweed biogas

- \rightarrow Cast seaweed has significant potential if considered unpleasant.
- \rightarrow Digest residues associated with extraction of products from seaweed.
- → Cultivation may be advantagous if combined with fish farms for improvement of marine environments.

Micro-algal biogas

- → Large scale capture of carbon from fossil fuel power plants is unrealistic at present; the technology requires very high carbon fines
- \rightarrow Innovative applications associated with bioenergy systems
- \rightarrow Optimum systems will involve cascading biorefinerys

Coastal biogas production and offshore biogas upgrading system

Offshore Membrane Enclosures for Growing Algae (OMEGA) system, http://www.nasa.gov/centers/ames/research/OMEGA/index.html

bioenergy2020+

BOKU - University of Natural Resources and Life Sciences. Vienna

Department for Agrobiotechnology. IFA-Tulln Institute for Environmental Biotechnology

DI Dr Bernhard Drosg

Konrad Lorenz Straße 20. A-3430 Tulln Tel.: +43 2272 66280-537. Fax: +43 1 2272 66280-514 bernhard.drosg@boku.ac.at . www.boku.ac.at. www.ifatulln.ac.at

Prof Jerry D Murphy (jerry.murphy@ucc.ie)
Interim Director MaREI, Vice Director ERI,
IEA Task 37 "Energy from Biogas" Leader (2016 – 2018)

European Commission

Horizon 2020 European Union funding for Research & Innovation

