

Pre-treatment technologies for biogas production

Composition biomass

- Proteins
- Fats
- Cellulose
- Hemicellulose
- Lignin

- Xylose - ß(1,4) - Mannose - ß(1,4) - Glucose -- alpha(1,3) - Galactose

Hemicellulos

Four steps of AD

Aims of pre-treatment technologies

Increasing reactor productivity by

- Degradation rates
- Increasing biogas yields
- Increasing process stability
- Degradation of hard degradable substances

Pre-treatment technologies

Biochemical pre-treatments

- Microbial pre-treatments
- Enzymatic pre-treatments

Chemical pre-treatments

- Caustic pre-treatments
- Acid pre-treatments

Physical pre-treatments

- Mechanical pre-treatments
- Thermal pre-treatments
- Ultrasonic pre-treatments

Combined processes

- Thermal-chemical pre-treatments
- Thermo-mechanical pre-treatments

Pre-treatment technologies I

Microbiological pre-treatment

- 2 phase system ("Hydrolysis and methanogenesis")
- Different pH-values

- H₂ and CO₂ production
- Increasing methane concentration
- Higher process stability

Applications I (Microbiological)

Multi stage fermentation systems

Pre-treatment technologies II

Mechanical pre-treatment

- Cutting
- Milling

- Electrical energy demand
- Increased biogas yield (depends on the particle size)
- Reduction of swim layers

Pre-treatment technologies III

Thermal pre-treatment

- External reactor
- Temperatures 100 230 °C
- Different pH-values

- Process engineering/energy demand
- Increased biogas yield
- Production of bacteriostatic components

Applications II (Thermal)

- Thermal pre-treatment (e.g. TDH)
- Substrates
 - Energy Crops
 - Brewers spent grains
 - Slaughter house wastes
 - Canteen/kitchen wastes
 - Sewage sludge

Pre-treatment technologies IV

Combined technologies

- Steam-explosion
- Extruder

- High thermal energy demand
- Increased biogas yield or degradation rate
- Reduction of swim layers

Applications III (Thermo-mechanical)

- Steam-explosion
- High energy demand
- Heating from 100 °C → 180 °C
 - E.g. 20 % DS → 83,55 kWh / Mg FM energy demand
- Spontaneous decompression
 - Evaporation of water
 - Destroyed cell structure

Applications IV (Thermo-mechanical)

- Extruder technology
- Electrical energy demand
- Compression → Energy conversion into heat
 - E.g. 65 kW \rightarrow ~0.8 t/h
- Influence to degradation rate
 - Retention time of < 40 d → higher gas yield of ~5-15 %</p>
 - Retention time of > 50 d → no additional gas yield was measured

Overview

Pre-treatment technology	Increasing specific surface	Degradation lignocellulose complex	Influence to AD process	Energy demand / specific costs
Microbiological	+	~	+	++/++
Thermal	+	++	+ +	-/
Mechanical	+	+/-	+	-/+
Steam- Explosion	+++	+ + +	+ *	/

Conclusions

- Advantage of pre-treatment technology depends on substrates
- Pre-treatment technology specific for chemical composition
- Effect of pre-treatment varies (positive/negative effect possible)
- Additional investment costs
- Energy balance

Thank you for your attention

Günther Bochmann

Institute of Environmental Biotechnology
Department of Agrobiotechnology IFA-Tulln
University of Natural Ressources and
Life Sciences Vienna
A-3430 Tulln
Konrad Lorenzstrasse 20

guenther.bochmann@boku.ac.at http://www.ifa-tulln.ac.at

International Symposium on Anaerobic Digestion of Solid Wastes and Energy Crop August 28th – September 01st, 2011

www.adswec2011.org