

Dr Jerry Murphy, BioEnergy and Biofuels Research, Environmental Research Institute, University College Cork, Ireland

Task 37 Energy from Biogas <u>http://www.iea-biogas.net/</u> Istanbul, Thursday 14 April 2011.

UCC Coláiste na hOllscoile Corcaigh, Éire University College Cork, Ireland

BIOGAS FROM ENERGY CROP DIGESTION

Jerry Murphy Rudolf Braun Peter Weiland Arthur Wellinger

Methane production per unit of feedstock

- •1 t of Volatile Solid has an energy value of ca. 19 GJ.
- •1 m_n^3 of methane (CH₄) has an energy value of ca. 38 MJ
- 1 m_n^3 CH₄ is equivalent to 1 L of diesel

•Thus for conservation of energy the maximum production of methane is 500 m³ .t⁻¹ VS.

•Silage may contain alcohols and acids that allow higher levels of methane to be produced

Methane yields from digestion of energy crops

Methane yield (m ³ per t volatile solids added)						
Maize (whole crop)	205-450	Barley	353-658			
Wheat (grain)	384-426	Triticale	337-555			
Oats (grain)	250-295	Sorghum	295-372			
(grain)	283-492					
Grass	298-467	Alfalfa	340-500			
Clover grass	290-390	Sudan grass	213-303			
Red clover	300-350	Red Canary Grass	340-430			
Clover	345-350	Ryegrass	390-410			
Hemp	355-409	Nettle	120-420			
Flax	212	Miscanthus	179-218			
Sunflower	154-400	Rhubarb	320-490			
Oilseed rape	240-340	Turnip	314			
Jerusalem artichoke	300-370	Kale	240-334			
Peas	390					
Potatoes	276-400	Chaff	270-316			
Sugar beet	236-381	Straw	242-324			
Fodder beet	420-500	Leaves	417-453			

The most frequently used energy crop

- yields of 9 to 30 tDM per hectare
- $205 450 \text{ m}^3 \text{ CH}_4 \text{ .t}^{-1} \text{ VS}_{added}$
- •1600 12,000 m³ CH₄ .ha

- •yields of 12 to 15 tDM per hectare
- 298 467 m³ CH₄ .t⁻¹ VS $_{added}$
- 3220 6300 m³ CH₄ .ha

Sugar Beet

- ca. 12 tDM per hectare
- 236 381 m³ CH₄ .t⁻¹ VS _{added}
- 2500 4000 m³ CH₄ .ha

Sun Flower

•yields of 6 to 8 tDM per hectare

- $154 400 \text{ m}^3 \text{ CH}_4 \text{ .t}^{-1} \text{ VS}_{added}$
- 800 3000 m³ CH₄ .ha

Variability of crop yields and digestibility

Grass yields tDS.ha⁻¹.a⁻¹

Reduced methane yield with age of grass

Harvest, pre-processing and storage of energy crops

Typical maize harvesting, using a standard combine harvester

Ensiling of whole crop chopped maize, using a front loader

Anaerobic process configuration

(a) one stage wet digestion (b) two stage wet digestion (c) dry batch system (d) dry continuous system

Feeding digesters

Silage dosing unit (back) with spiral elevator (front).

Solid substrate grinder (right) used for preparation of dry substrates (maize) in anaerobic digestion of energy crops

Treatment, storage and usage of digestate

Gas tight coverage of a post storage tank for digestate. Residual biogas is collected for energy use, while greenhouse gas and ammonia emissions are prevented. Open lagoon storage for completely digested maize and grass silage;

Four Examples:

(1) 500 kWe energy crop digestion plant
(2) Co-digestion of energy crops at 1 MWe scale
(3) Continuous dry digestion energy crop plant
(4) Grass to transport fuel

500 kW_e energy crop digestion plant

Digestate storage

300 ha of agricultural land

15,000 m³ silage capacity ($50m^3$ of silage capacity per hectare).

2 tanks of 1500 m³ each (10m³ of digestion capacity per hectare)

500 kW_e energy crop digestion plant

500 kW_e energy crop digestion plant

Input of maize whole crop silage	5,940 t. year ⁻¹
Input of grass silage	2,181 t. year ⁻¹
Input of clover silage	1,374 t. year ⁻¹
Total feedstock	9,495 t. year ⁻¹
Biogas production	1.88 Mio m ³ . year ⁻¹ (198 m ³ .t ⁻¹)
Production of electrical energy	4,153 MWh. year ⁻¹ (38%η _e)
Production of thermal energy	4,220 MWh. year ⁻¹ (39%η _t)
Own electrical consumption	161 MWh. year ⁻¹ (4% parasitic demand)
Own thermal consumption	701 MWh. year-1 (17% parasitic demand)
Sale of electricity	3,992 MWh. year ⁻¹
Sale of thermal energy	1,697 MWh. year ⁻¹ (48% of available)

Co-digestion of energy crops at $1MW_e$ scale

Two parallel digesters (left background) with gas storage integrated in digester 2. Operated at 39°C and a 77 day retention time

Covered final digestate storage tank (center foreground) with gas storage

Co-digestion of energy crops at 1MW_e scale

Co-digestion of energy crops at 1MW_e scale

Input energy crops	11,000 t. year ⁻¹	
Input manure + leachate from silage	7,300 t. year ⁻¹	
Total feedstock	18,300 t. year ⁻¹	
Silage clamp capacity	9,000 m³ (0.82 m³.t ⁻¹)	
Total volume of digesters	3,850 m ³ (0.21 m ³ .t ⁻¹ .year ⁻¹)	
Biogas production	4.02 Mio m ³ . year ⁻¹ (220m ³ .t ⁻¹)	
Production of electrical energy	8,030 MWh . year ⁻¹	
Production of thermal energy	8,223 MWh . year ⁻¹	
Total digestate storage	5,800 m ³ (0.32 m ³ .t ⁻¹ .year ⁻¹)	

Continuous Dry Digestion energy crop plant

Digester 1,200 m³ (height of 25 m, diameter 8.5 m). Ensiled crops mixed with digestate and mixture pumped to the top. Upper zone intense fermentation with constant recycle of digestate, lower zone post fermentation. 750kW_e but limited to $500kW_e$ for tariff purposes

355 ha arable land and 25 ha pasture land 54 °C at a 29 day residence time, Volumetric loading rate of 9.7 kg VS.m⁻³.d⁻¹ Substrate 30 % DS; digestate 16 % DS. Specific biogas productivity is 5.8 m³ per m³ reactor volume per day⁻¹.

Continuous Dry Digestion energy crop plant

Continuous Dry Digestion energy crop plant

Input of whole crop maize silage	5,700 t . year-1
Input of total plant cereal silage	2,760 t . year-1
Input of sunflower silage	1,490 t . year ⁻¹
Input of grass silage	720 t . year ⁻¹
Input of yard manure	830 t . year ⁻¹
Total feedstock	11,500 t . year ⁻¹
Potential biogas production	2.54 Mio m ³ . year ⁻¹ (221m ³ .t ⁻¹)
Production of electrical energy	4,140 MWh.year ⁻¹
Production of thermal energy	4,340 MWh .year ⁻¹
Own electrical consumption	350 MWh .year ⁻¹ (8.5% parasitic demand)
Own thermal consumption	275 MWh .year ⁻¹ (6.3% parasitic demand)

Grass to transport fuel

Source: energiewerkstatt, IEA and personal photos

storage

digester

Grass to transport fuel

Grass to transport fuel

Grass silage yield (150 ha @ 11 tDS.ha ⁻¹ .year ⁻¹)	1650 t DS. year ⁻¹
Mass of silage per annum (@40% dry solids)	4125 t. year ⁻¹
Capacity of silage clamps	3000 m ³ (20m ³ .ha ⁻¹ .year ⁻¹)
Storage of silage (density of silage 500 kg . m ⁻³)	4.4 months
Volatile solids (92% of DS)	1518 t VS. year ⁻¹
Combined Fermenter volume	4000 m ³ (0.96m ³ .t ⁻¹ .year ⁻¹)
Loading Rate	1.04 kg VS.m ⁻³ .day ⁻¹
Methane production (340 m ³ CH ₄ . t ⁻¹ VS)	516,120 m _n ³ . year ⁻¹
Biogas production (@55% CH_4)	938,400 m _n ³ . year ⁻¹ (227 m _n ³ .t ⁻¹)
Biomethane production (@98% CH_4 ; 5% to off gas)	500,350 m _n ³ . year ⁻¹
Biomethane production	57 m _n ³ . hour ⁻¹
Biomethane storage (1920 L @ 300 bar = 576 m_n^3)	10 hours

Survey of 41 Austrian Digesters

Used substrates (% VS)

- •The mean methane yield was 0.362 m_n³ kg⁻¹ VS;
- •Mean electrical efficiency was 31.3%;
- •The VS degradation efficiency had a mean value of 82.8%;
- •Lack of thermal markets yielded an overall mean efficiency of biogas use at 47.3%.

Energy Crop Digestion plants in Germany

Frequency of different substrates in German biogas plants (FNR, 2009)

	Maize	Cereal	Grass	Whole crop	Early rye
	silage	Grains	silage	cereal silage	Silage
Average mass percentage of total substrate	50.0	3.1	10.5	10.7	9.8
Minimum (%)	7.0	0.25	0.53	0.29	0.36
Maximum (%)	98.3	23.5	51.5	29.3	53.5

Net energy yield per hectare of crops

	Maize	Potatoes	Fodder beet	Grass	Oilseed rape	Rye
Methane yield m ³ . ha ⁻¹	5,748	9,235	8,515	4,303	1,344	732
GJ . ha ⁻¹	217	349	322	163	51	28
Process energy demand for digestion GJ. ha ⁻¹	33	52	48	24	8	4
Energy requirement in cropping GJ. ha ⁻¹	17	24	20	17	17	17
Total energy requirement GJ. ha ⁻¹	50	76	68	41	25	21
Net energy yield GJ.ha ⁻¹	167	273	254	122	26	7
<u>Output (GJ.ha⁻¹)</u> Input (tot. Energy)	4.3	4.6	4.7	4.0	2.0	1.3

Compare to liquid biofuels: e.g. sugarcane ethanol net energy ca. 120 GJ.ha⁻¹.year⁻¹

Pathways for use of biogas

Economic viability of biogas from energy crops

Grass silage: Costs approximately €25 t⁻¹ for pit silage (22% DS) Produces about 140m_n³ of biogas (3.00 GJ; 325 kW_e @ 40% η_e) Feedstock cost is of the order of € c 7.7 kW_eh⁻¹.

Table 5. Potential tariffs with German tariffstructure (simplified).

Tariff	On-site CHP (€c kWh _e -¹)	Off-site CHP (€c kWh _e -¹)
Basic compensation	9.18	9.18
Emission minimization bonus	1	-
Grass as a feedstock	7	7
Upgrading	-	2
Total	17.18	18.18

Relationship between tariffs and biogas industry

Number of Biogas plants in Germany

Economic viability of biogas as a transport fuel

Fuel	Unit cost	Energy value	Cost per unit energy (€c MJ ⁻¹)
Petrol	€1.40 L ⁻¹	30 MJ. L ⁻¹	4.7
Diesel	€1.40 L ⁻¹	37.4 MJ. L ⁻¹	3.7
Biomethane from grass	€1.06 m _n - ³	37 MJ. m _n -3	2.9
CNG – UK	€0.71 m _n -3	37 MJ. m _n -3	1.9
Bio-CNG ^a	€0.75 m ⁻³	37 MJ. m _n -3	2.0

^a Bio-CNG price calculated using UK CNG prices and a blend of 10% biomethane, 90% CNG. No excise on gas as a propellant; VAT charged at 21%

Number of vehicles running on GNG worldwide

Potential for Biomethane in Ireland: RES-T and RES-H

Feed stock	Potential 2020 (PJ)	Practical 2020 (PJ)	Factor for RES-T	Contribution to RES-T	% energy in transport 2020 (240 PJ)	% residential gas demand (34 PJ)
Slurry	15.53	1.88	X2	3.76	1.57	5.5
OFMSW	2.26	0.57	X2	1.14	0.48	1.7
Slaughter	1.37	0.68	X2	1.36	0.57	2.0
Grass	47.58	11.93	X2	23.86	9.94	35.1
Total	66.74	15.03		30.06	12.53	44.3

Irish Gas Grid

Serves: 153 towns 19 counties 619,000 houses 24,000 industrial and commercial

Recommendations

- Recommendation 1: Tariffs for anaerobic digestion.
- Recommendation 2: Align renewable energy and agricultural policy
- Recommendation 3: Set targets for gas demand to be met with biomethane.
- Recommendation 4: Use of biomethane in transport
- Recommendation 5: Research and development