

Monitoring and process control of biogas plants

Günther Bochmann

University of Natural Resources and Life Sciences, Vienna Dept. for Agrobiotechnology (IFA Tulln) Institute for Environmental Biotechnology

Process monitoring can help to ...

- Identify instabilities during anaerobic digestion
- React on time before a severe crash happens
- Re-stabilise crashed plants
- Give an overall picture of the biogas process
- Accompany a successful start-up of a plant

- Reduced gas production (money)
- \succ Odour (problems with the neighbours)

Possible reasons for process instabilities

- Feeding problems/changing feestock
- Temperature changes
- Utilisation of high nitrogen feedstock
- Utilisation of high sulphur feedstock
- Trace element limitation
- Further inhibitory substances in feedstock
 - Heavy metal ions
 - Light metal ions
 - Antibiotics and disinfectants

Monitoring parameters can be divided inter-

- Parameters characterising the process
- Early indicators of process imbalance

Parameters characterising the process

- Quantity and composition of feedstock
- Biogas production and gas composition
- Fermentation temperature
- TS (total solids) / DM (dry matter)
- pH value
- Ammonium nitrogen (NH₄-N)

\rightarrow These parameters are necessary for finding reasons of a process imbalance

Early indicators of process imbalance

- Gas measurement (CH₄, CO₂, H₂)
- Volatile fatty acids (VFA)
- Alkalinity ratio (<u>German:</u> FOS / TAC) titration
- Redox potential
- Complex monitoring of mixed parameters (online!)
 - NIRS (Near infra-red spectrometry)
 - Electronic nose
 - ...

→ These parameters give information on current process stability, but often not the reason why!

4 steps of anaerobic digestion

Limits - parameters characterising the process

	Range of parameter
NH ₄ -N	< 5,000 mg L ⁻¹
	> 5,000 mg L ⁻¹
Hq	7 - 8
	< 7
	> 8
S	< 10
	> 10

Reasons for instability

- Process engineering/digester type
- Retention time
- Lack of nutrients
- Inhibiting feedstock (bacteriostatic, archaeaostatic, -toxic)
- > Bottle neck of the process

General recommendations for avoiding process imbalances

- Continuous feeding
- Continuous feedstock mix (e.g. manure and biowaste)
- Careful change of feedstock mixes
- Avoid temperature changes
- Constant intervals and intensity of agitating
- Continuous process control

Conclusions

The anaerobic process is a complex chain of subsequent and interacting degredation steps

- \rightarrow biological monitoring of a biogas plant is highly important
- Some monitoring parameters are essential for indicating an upcoming process imbalance, whereas others help to find the reason for it
- Various challenges exist: available infrastructure, influence of sampling, online vs. offline data, skills of the operators
- > No clear stability limits can be defined, rather recommended ranges
- > Avoiding GHG emissions

Training of biogas plant operators

© Lokale Energieagentur – LEA GmbH

IEA Bioenergy Task 37 – Technical brochure on process monitoring of biogas plants

Available at: http://www.iea-biogas.net/technical-brochures.html

The Austrian participation in the IEA Bioenergy Task 37 is supported by the Austrian Federal Ministry for Transport, Innovation and Technology

bm RESEARCH COOPERATION

BOKU – Universität für Bodenkultur, Wien University of Natural Resources and Applied Life Sciences, Vienna Department for Agrobiotechnology, IFA-Tulln, Institute for Environmental Biotechnology

DI Dr Günther Bochmann Konrad Lorenz Straße 20, A-3430 Tulln Tel.: +43 2272 66280-536, Fax: +43 1 2272 66280-503 Guenther.bochmann@boku.ac.at, www.boku.ac.at, www.boku.ac.at