Biogas Recovery from Domestic Wastewater with Anaerobic Membrane Bioreactor

Jaeho Bae

Inha WCU research team

INHA University, World Class University Research Team

CONTENTS

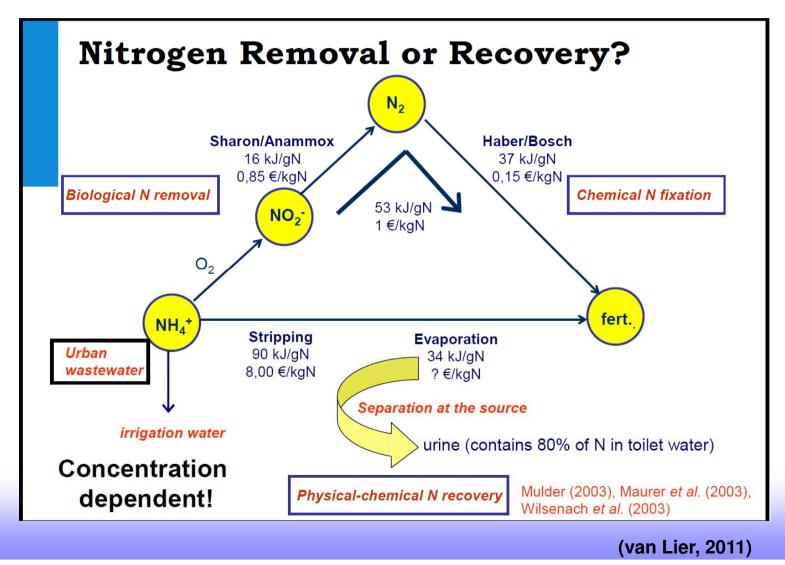
Wastewater as Resources

I. Wastewater as Resources

- Wastewater's Resource Potential
 - Water
 - Industry, Agriculture, Domestic Use
 - Fertilizing nutrients (N&P)
 - Energy: Organic & Latent Heat

I. Wastewater as Resources

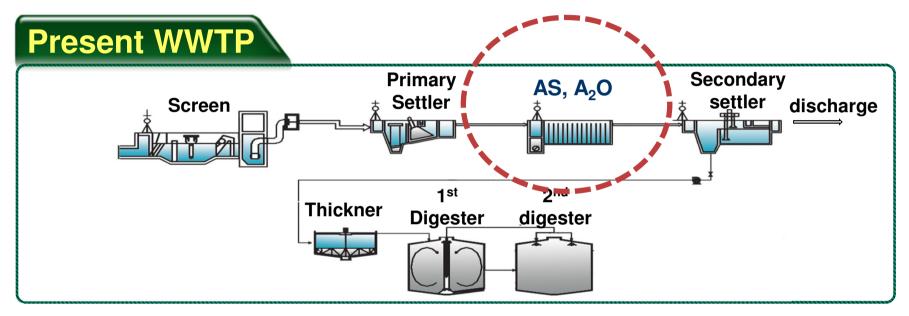
• Water



Wastewater Reuse for Drinking Newater - Singapore

I. Wastewater as a Resource

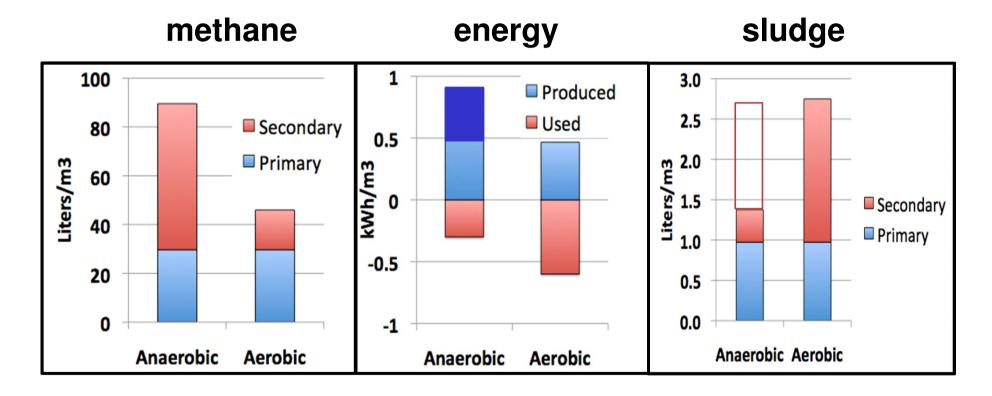
• Nitrogen


I. Wastewater as Resources

What is Best Reuse Option for Capturing All of Wastewater's Resource Potential?

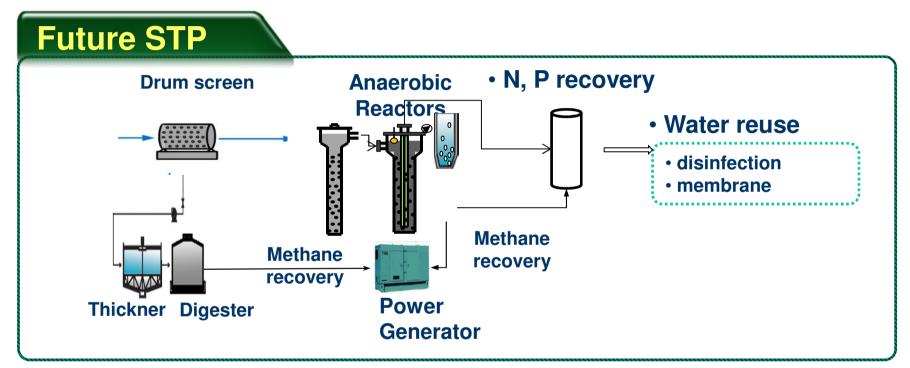
- Irrigation is an energy consumptive use
- Irrigation is major consumer of water
- Quality requirements less than for domestic reuse
- Wastewater nutrients (N&P) are useful fertilizers
- Wastewater energy potential can be recovered through anaerobic treatment

• Paradigm Shift for WW Treatment



Problems with Present WWTP

- **Energy**: Aeration Energy (50% of STP consumption)
- **Sludge**: 50% of organic into sludge, non-biodegradable
- Resource: N and P


• Aerobic vs Anaerobic Treatment

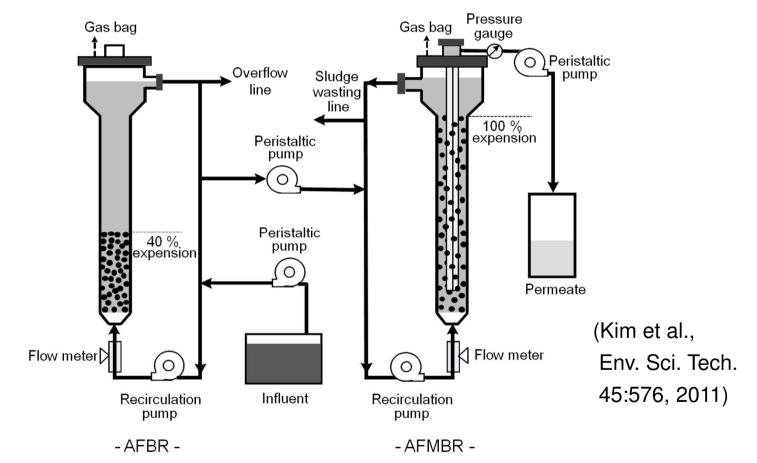
- Sewage: BOD = 200 , VSS = 192 mg/L

• New Paradigm: Resource Recovery from WW

- Energy positive STP: saving and production of Energy
- Sludge reduction
- N and P recovery

Common Fallacies on Anaerobic Treatment

- Can only treat highly concentrated wastewaters such as sewage sludge
- High Temp: Must operate at temperature of 35°C to be efficient
- Long HRT: Retention time of 15 days or more is needed
- Poor effluent quality: Cannot degrade organic compounds as efficiently as aerobic systems



Question

Can we treat DWW anaerobically to achieve net energy production and sludge reduction while meeting normal effluent quality standards at short hydraulic retention time and ambient temperature?

Proposed SAF-MBR system

Staged Anaerobic Fluidized Membrane Bioreactor (SAF-MBR)

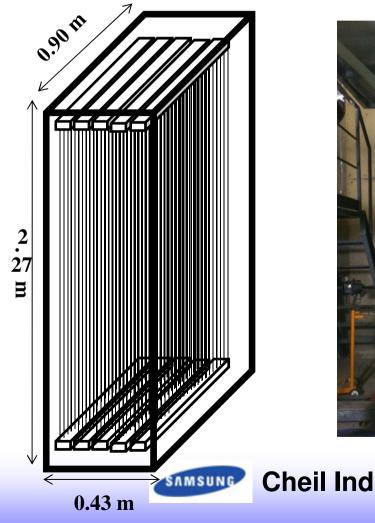
- Anaerobic fluidized bed reactor (AFBR)
 - Advantages

Disadvantages

- Short HRT

- Cost for media
- Good mass transfer
- Good sorption capacity (GAC)
- Anaerobic fluidized MBR (AFMBR)
 - Advantages
 Disadvantages
 - High quality (SS free) Membrane fouling effluent

Fouling control with GAC fluidization in the AFMBR



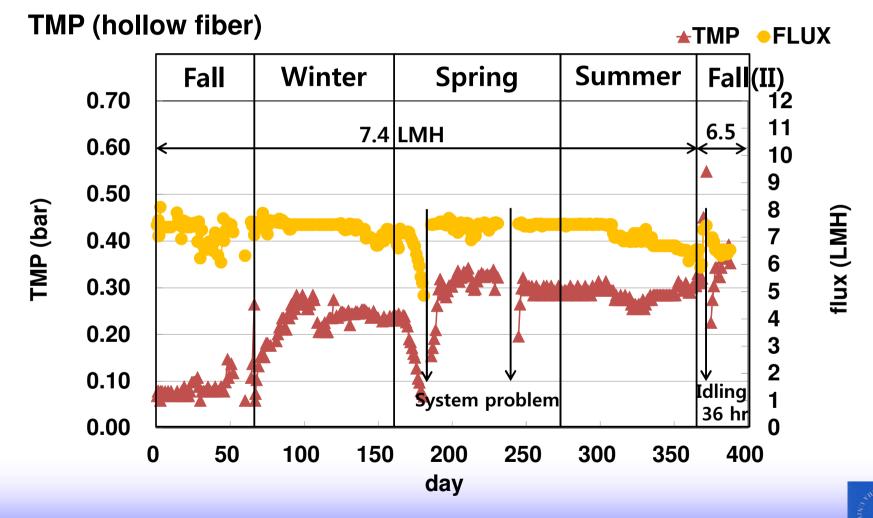
10 m³/day SAF-MBR Pilot Plant at Bucheon, South Korea

• Hollow fiber membrane in AFMBR

Cheil Industries

- Operational Conditions
 - AFBR
 - GAC = 25%
 - HRT = 1.9 h
 - AFMBR
 - GAC = 50%
 - HRT = 3.1 to 3.5 h
 - Hollow Fiber Membranes (PVDF, 0.03 μ m)
 - Membrane Flux = 7.4 to 6.5 $L/m^2/h$
 - Total HRT = 5 to 5.4 h
 - 2 mm-screened primary clarifier effluent

• COD Removals


Day	Season	Temp. (°C)	Inf. (mg/L)	AFBR Eff. (mg/L)	AFMBR Eff. (mg/L)	Rem. (%)
0–64	Fall	20 – 15	273	172	39	86
65 –165	Winter	15 – 8	319	231	58	81
166–273	Spring	15 – 25	371	252	39	90
274–366	Summer	25 – 30	282	152	14	95
367–383	Fall(II)	25 – 20	226	164	15	93
						NAME OF THE OWNER

• BOD₅ Removals

Day	Season	Temp. (°C)	Inf. (mg/L)	AFBR Eff. (mg/L)	AFMBR Eff. (mg/L)	Rem. (%)
0 – 64	Fall	20 – 15	169	75	18	89
65 – 165	Winter	15 – 8	233	121	33	86
166 – 273	Spring	15 – 25	187	127	20	89
274 – 366	Summer	25 – 30	134	78	3	98
367 – 383	Fall(II)	25 – 20	148	105	5	97

• TMP Variations

• Energy Balance (kWh/m³)

	Energ	CH ₄		
	GAC	Mem- brane	Total	Energy Potential*
AFBR	0.009	-	0.009	0
AFMBR	0.104	0.003	0.107	0.139
total	0.113	0.003	0.116	0.139

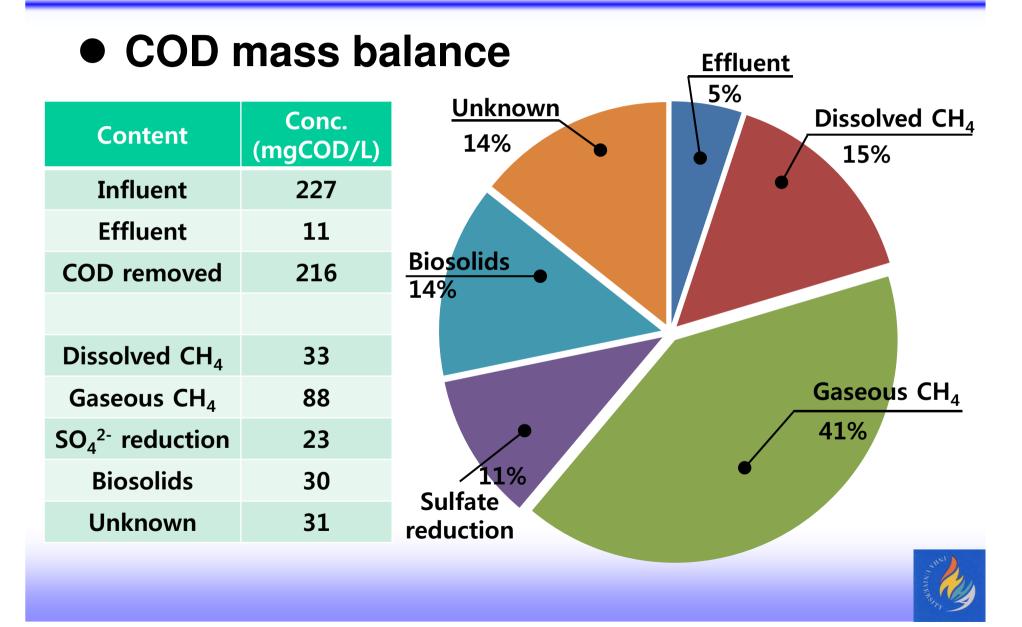
* This does not include methane from primary sludge ** Conventional gas purging requires 0.5-1.0 kWh/m³

IV. Summary

- Effluent qualities of the AnMBR treated DWW at a total HRT of < 6 h and ambient temperatures (8 – 30 °C) was comparable to those of the conventional aerobic processes
 - Removals of COD > 85% and $BOD_5 > 90\%$
 - Effluent COD < 30 mg/l and BOD₅ < 5 mg/L
- 2. GAC souring was very effective tool for reducing membrane fouling at low operating cost.
- 3. The AnMBR is a low-biosolids-producing, high-efficiency domestic wastewater treatment system with net energy production and sludge reduction potential.

IV. Future Directions

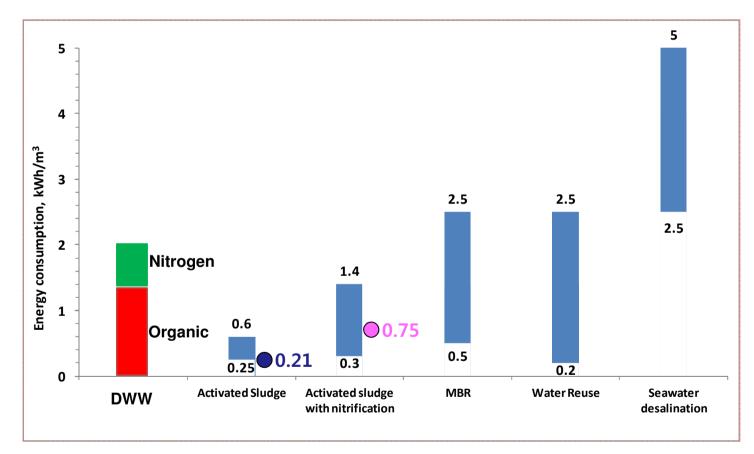
- Optimization of AFMBR
- Recovery and use of dissolved methane
- Control of H₂S production or its utilization
- N and P recovery
- Nitrogen removal
 - Heterotrophic method is not an option
 - Anammox
 - Short-cut dentrification with sulfide or S
 - Use of dissolved methane



INHA WCU team is Developing the Best

Anaerobic Membrane Technology

for Domestic Wastewater


Publications on the SAF-MBRs

- 1. Domestic Wastewater Treatment as a Net Energy Producer Can This be Achieved? *Env. Sci. Tech.,* 2011
- 2. Anaerobic Fluidized Bed Membrane Bioreactor for Wastewater Treatment, *Env. Sci. Tech.*, 2011
- 3. Model to Couple Anaerobic Process kinetics with Biological Growth Equilibrium Thermodynamics, *Env. Sci. Tech.*, 2011
- 4. Effects of influent DO/COD ratio on the performance of an anaerobic fluidized bed reactor fed low-strength synthetic wastewater, *Biores. Technol.*, 2011.
- 5. Lower operational limits to volatile fatty acid degradation with dilute wastewaters in an anaerobic fluidized bed reactor, *Biores. Technol.*, 2012.
- 6. Anaerobic treatment of municipal wastewater with a staged anaerobic fluidized membrane bioreactor (SAF-MBR) system, *Biores. Technol.*, 2012
- 7. Two-stage anaerobic fluidized-bed membrane bioreactor treatment of settled domestic wastewater, Wat. Sci. Tech., 2013.

I. Wastewater as Resources

Energy: Contents and Treatment Requirements

Energy footprint of the water treatment processes

Adapted from Meda and Cornel, 2010, Wilson, 2009, Voutchkov, 2010 and Lazarova et al, 2012.

Thank you

