
Assessment of Environmental Impacts from On-farm Manure Digesters

Anna Crolla

May 27, 2010

Benefits of Anaerobic Digestion

- 1. Production of renewable energy electricity and heat.
- 2. Permits the addition of high strength wastes to manure to increase biogas yields (these wastes are otherwise more difficult to treat alone.
- 3. Odour reduction.
- 4. Reduction of pathogens.
- 5. Reduction of greenhouse gas (GHG) emissions.
- 6. Improves the immediate fertilizer value of the manure.

Studies Assessing Environmental Impacts from Anaerobic Digesters

Several studies are being conducted to investigate environmental impacts associated with on-farm manure digesters:

- University of Guelph :

Characterizing digestate quality and impacts to air, soil and groundwater quality after land application.

- Agriculture and Agri-food Canada (AAFC):

Measurement of fugitive CH_4 and NH_3 emissions at the farm.

Ontario Ministry of Agriculture, Food and Rural Affairs (OMAFRA):
Collection of data to develop of a GHG Offset Protocol.

University of Guelph

Air, Soil and Groundwater Quality Monitoring of Raw and Digested Manure Land Application Trials

> Researchers: Anna Crolla, M.A.Sc. Chris Kinsley, M.Eng., P.Eng. Claudia Wagner-Riddle, Ph.D.

Project Overview

• Anaerobic Digesters:

- Monitoring of 2 on-farm anaerobic digesters
- Evaluate use of co-substrates for enhanced biogas production (pilot & full scales)

• Land Application Trials:

- Land application trials for GHG measurements (AAFC)
- Land application trials for fate of nutrients and pathogens in soil and water

Anaerobic Digesters

- 1. Fepro Farms (dairy operation) Cobden, Ontario
- 2. Terryland Farm (dairy operation) St. Eugene, Ontario

Monitoring Parameters

Digester System Performance	Environmental Impacts
Biogas production & CH ₄ concentration	Volatile fatty acids (VFAs)
Electricity & heat production	E.coli
Organic Matter: COD, Volatile Solids	Salmonella
Nutrients: NH ₄ ⁺ , Organic-N, o-PO ₄ ³⁻ , TP	C.perfringens
pH, IA/TA ratio (FOS/TAC)	Enterococci

On-farm Anaerobic Digesters

Fepro Farm Digester (Cobden, Ontario)

- Owned by Paul and Fritz Klaesi
- Mesophilic system (40°C)
- 500 kW generator
- Co-digestion of dairy manure & grease
- Electricity production sold to grid
- Heat production used to heat digester, 2 homes, milking parlour

Terryland Farm Digester (St. Eugene, Ontario)

- Owned by George and Linda Heinzle
- Mesophilic system (40°C)
- 180 kW generator (soon to be 360 kW)
- Co-digestion of dairy manure & grease
- Electricity production sold to grid
- Heat production used to heat digester, home, milking parlour and to dry silage

Electricity Production

Example: Terryland Farm Digester, St. Eugene, ON

	Average Biogas* (m³/day)	Average Electricity with 180 kW Generator (kWh/day)	Average Biogas Yield (m ³ /kg VS _{in})
Terryland Digester	1692	3917	0.67
STDEV	187	362	0.19

* Average methane content of biogas 62%

- Biogas production when 18% (by volume) of grease residue is added to digester
- Biogas production is over 4 times higher from when only manure was used as feedstock (415 m³/day)
- Waste heat is used on the farm (potential of 730,000 Btu/h)

Odours

- Odours: ammonia (NH₃), volatile fatty acids (VFA), phenolic compounds
- 96 % reduction of VFAs

Example: Fepro Farm Digester, Cobden, ON

		Total VFA Concentrations (mg/L)						
	Raw Manure				Digested	Manure		
	Acetic Acid	Propionic Acid	Butyric Acid	TVFA	Acetic Acid	Propionic Acid	Butyric Acid	TVFA
Average	4625	1521	884	7030	171	78	1	250
STDEV	1184	589	434	2207	94	22	1	117
% Red.	96					95	99.9	96


Pathogens

70-95% reduction in pathogens (~ 1-2 logs)

	Geometric Mean Bacteria Concentrations (CFU/100mL)					
	k	Klaesi Digest	er	Terryland Digester		
Pathogens	Raw Manure	Digested Manure	Log Reduction	Raw Manure	Digested Manure	Log Reduction
E.coli	6.00 E+07	2.90 E+05	2.32	1.21 E+07	3.03 E+05	1.60
Log STDEV	1.08	0.73		0.58	0.66	
Salmonella	6.51 E+04	8.84 E+03	0.87	1.27 E+05	3.48 E+04	0.56
Log STDEV	1.02	0.94		0.79	0.52	
C.perfringens	3.81 E+06	2.99 E+05	1.11	2.20 E+06	2.55 E+05	0.94
Log STDEV	0.48	0. 55		0.49	0.25	
Enterococci	9.11 E+06	7.29 E+05	1.10	4.86 E+06	3.19 E+05	1.18
Log STDEV	0.51	0.60		0.61	0.78	

E.coli in raw manure sample

E.coli in digested manure sample

Land Application Trials

 University of Guelph at Alfred – Monitoring of soil and water after land application of raw manure, digested manure and inorganic fertilizer.

Monitoring Parameters

Groundwater and Soil Samples	Air Measurements
Nutrients : NH ₄ ⁺ , NO ₃ ⁻ , o-PO ₄ ³⁻ , TP, Organic-N	NH ₃ & N ₂ O
E.coli	Plant Samples
Salmonella	Nutrients: Yield, Total-N, Total-P
C.perfringens	
Enterococci	

Characteristics of Digested Manure

- 70% reduction in volatile solids (VS)
- 61% reduction in chemical oxygen demand (COD)
- 29% increase in ammonium-nitrogen (NH₄⁺-N)

Parameters	Raw Manure	Grease	Digested Manure
% Dry Matter	11.3	23.3	5.7
Total Solids (g/L)	113	233	57
Volatile Solids (g/L)	94	219	37
Chemical Oxygen Demand (g/L)	65	135	31
Total Nitrogen (g/L)	3.45	0.19	3.58*
Total Ammonium (g/L)	1.73	0.17	2.23*
Total Phosphorus (g/L)	0.71	0.10	0.61*

Example: Terryland Farm Digester, St. Eugene, ON

* Corrected for the dilution effects from addition of grease

Corn Yields

Application Rate		Corn Yield (bu/ac) *
(kg N/ha)	Raw Manure	Digested Manure	Increase in Yield
2007 – 120 kg N/ha	128	196	53%
2009 – 140 kg N/ha	84	105	25%

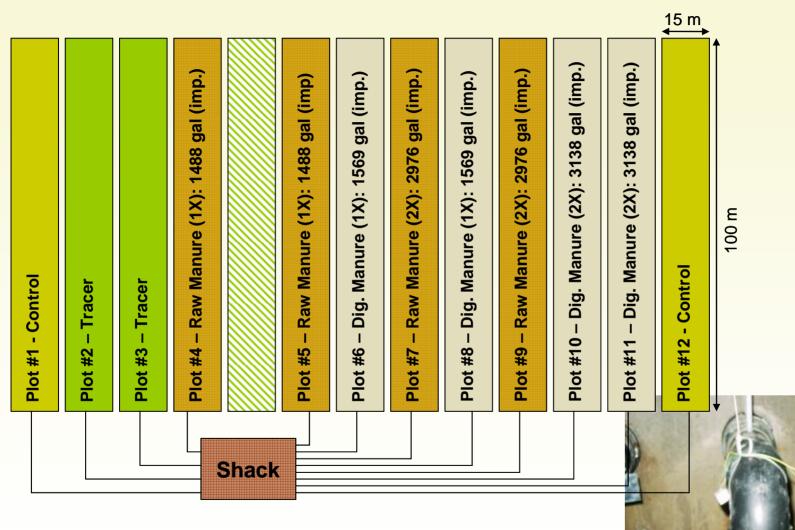
* Corn yields are standardized to 15.5% moisture and 56 lbs per bushel

Land Application Trials Raw & Digested Manure

- Study conducted by Dr. Pattey (AAFC)
- Spray broadcast and incorporated within 24 hours (~ 70 kg N/ha)
- Higher ammonia emissions from digested manure (up to 2 times higher)
- Ammonia peaks within first day after application and reaches background just after incorporation
- N₂O slightly higher in digested manure for fall application

	Raw Manure Application (Fall)	Digested Manure Application (Fall)	Raw Manure Application (Spring)	Digested Manure Application (Spring)
Cumulative N_2O Emissions (kg N_2O -N/ha)	1.5	2.4	1.50	1.55
N ₂ O Emission Factor (kg N ₂ O per kg Inorganic- N applied)	0.027	0.031	0.025	0.021

Source: Dr. Elizabeth Pattey (AAFC – Ottawa)


Plot Trials at Alfred Campus

- Clay soil plots with surface and subsurface drains
- Twelve 0.15 ha plots (15 m x 100 m)
- Plots hydraulically isolated with liner between plots to a depth of 2 m
- Surface drains at 15 cm depth and subsurface drains at 1 m depth
- 3 m wells around plot perimeter
- Application of raw and digested manure in both spring and fall (spray broadcast and incorporated within 24 hrs)
- Low N loading: 120 kg N/ha
- High N loading: 240 kg N/ha
- Crop rotation barley/corn/corn

Alfred Plots – Layout of Clay Soil Plots

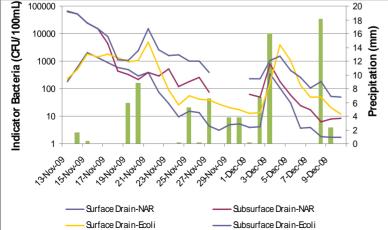
Both surface and subsurface water drainage are collected

Alfred Field Station

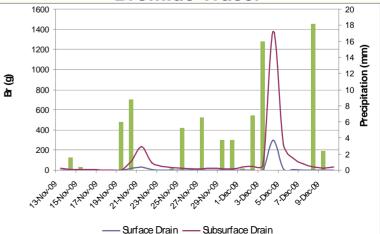
- All 24 drains run into basement of cabin
- Flow measured using tipping buckets (datalogged)
- Flow proportional composite samples are taken (tipping buckets control sampling pumps)

Nitrates in Subsurface Drains

Land Application	Flow-weighted Mean NO ₃ -N Concentrations (mg/L) 60-day Period After Land Application			
Trials	Subsurface Drains	Subsurface Drains		
Spring 2008	1x Agronomic Rate (75 kg N/ha)			
Raw Manure	7.3			
Digested Manure	9.5			
Fall 2008	1x Agronomic Rate (75 kg N/ha)			
Raw Manure	4.2			
Digested Manure	3.9			
Spring 2009	1x Agronomic Rate (140 kg N/ha)	2x Agronomic Rate (280 kg N/ha)		
Raw Manure	9.3	14.8		
Digested Manure	13.1	16.9		


- Nitrate concentrations in control plots range from 1.9 to 3.7 mg/L
- Peak nitrate concentrations in subsurface drains observed 30 days after manure application:
 - * 9.6 mg/L (140 kg N/ha) & 15.5 mg/L (280 kg N/ha) in plots with raw manure
 - * 17.5 mg/L (140 kg N/ha) & 28.4 mg/L (280 mg/L) in plots with digested manure

Bacteria in Subsurface Drains


Geometric Log Mean of Pathogen Indicator Numbers in Subsurface Drains (log CFU/100 mL)

	E.coli	Salmonella	E.coli	Salmonella
2008	1x Agronomic Rate (75 kg N/ha)			
Raw Manure	1.8 ± 0.9	0.8 ± 0.8		
Digested Manure	1.7 ± 0.7	0.9± 0.7		
Control (no treatment)	1.8 ± 0.5	0.7 ± 0.4		
2009	1x Agronomic Ra	ate (140 kg N/ha)	2x Agronomic F	Rate (280 kg N/ha)
Raw Manure	2.8 ± 0.9	2.1 ± 0.9	3.1 ± 0.5	2.3 ± 0.8
Digested Manure	2.6 ± 0.*	2.0 ± 0.8	3.0 ± 0.3	2.0 ± 0.8
Control (no treatment)	1.6 ± 0.7	1.2 ± 0.6		

Research Study Outcomes

- Life Cycle Analysis (LCA) for the on-farm manure anaerobic digester technology (as part of a larger study lead by Dr. Wagner-Riddle).
- Recommendations for land application of digested manure that minimize nutrients & pathogens to surface and subsurface waters under varying agronomic conditions.
- Recommendations for mitigating GHG emissions from the land application of digested manure.

Agriculture and Agri-food Canada (AAFC)

Measurement of Fugitive CH₄ Emissions from Digestion System and NH₃ Emissions following Land Application of Digested Manure

Researcher: Ray Desjardins, Ph.D.

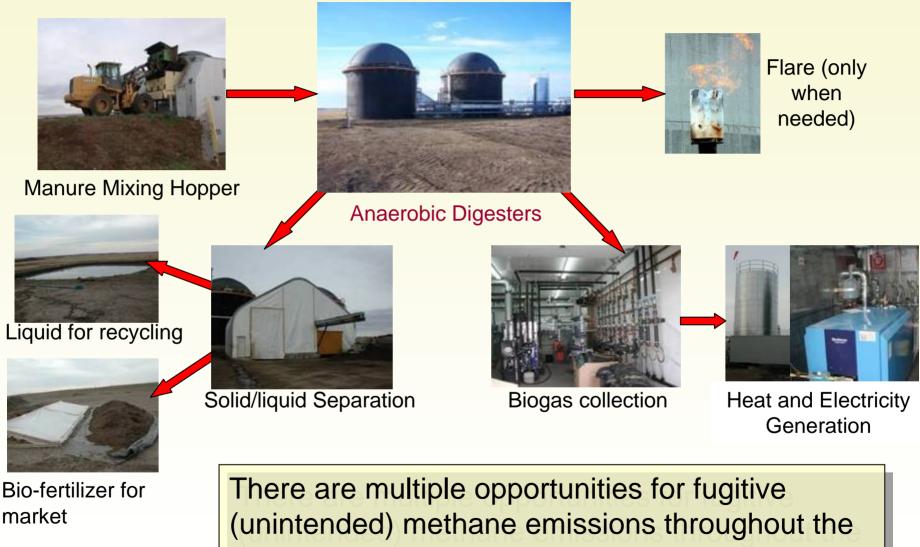
Project Overview

• Anaerobic Digesters:

 Quantify CH₄ fugitive emissions from the whole biodigestion system

• Land Application Trials:

Measurements of NH₃ emissions following land application of digested manure


On-farm Anaerobic Digester

- Integrated Manure Utilization System (IMUS) Biogas Plant
- Thermophilic system (55°C)
- 1 MW generating capacity
- Feedlot of 36,000 head of cattle
- 100 tonnes of manure consumed daily (20% of feedlot manure)
- Electricity sold to grid and heat used on-site
- Solid/liquid separation of digestate: liquid to storage lagoon and solid used as fertilizer

The Integrated Manure Utilization System

biogas production and consumption process.

Quantifying Fugitive CH₄ Emissions from Digesters

- Anaerobic digesters reduce GHG emissions & generate clean energy.
- GHG reductions depend on many factors (design, feedstock, etc.), including quantity of fugitive CH₄ emissions.
- Minimizing fugitive emissions can maximize energy production, while minimizing environmental impacts.

- Quantifying fugitive CH_4 emissions is difficult commonly assumed:
 - 15% of total CH₄ production (California Climate Action Registry)
 - 15% of production (Clean Development Mechanism (CDM), 2005)
 - 10% of production (Intergovernmental Panel on Climate Change (IPCC), 2006)
 - 5% of production (US Environmental Protection Agency (USEPA) for covered anaerobic lagoons)

Observations

Flare not efficient at burning-off methane in biogas:

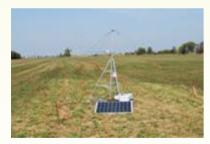
- Flare used when gas cannot be used for electricity generation.
- Enhanced CH₄ emissions during flaring is evidence of inefficiency.
- Estimates of flare burning efficiencies are as low as 50%.

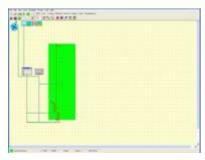
Manure hopper significant source of fugitive methane:

- Manure enters biogas plant at hopper, where warm water is mixed with the manure & is open to atmosphere.
- Suggests reduction in emissions when hopper is redesigned with better seal (negative pressure).

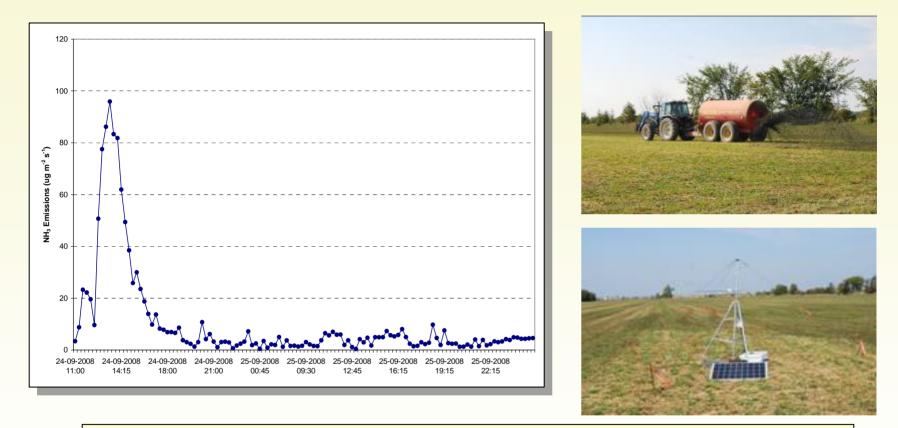
Quantifying NH₃ Emissions from Land Application of Digested Dairy Manure

- Increased concentration of NH₄⁺-N in digested manure can lead to increased NH₃ emissions during land application
- Land application trials using digested dairy manure are conducted at Terryland Farms
- Digested manure is spray broadcast in 8m wide bands and incorporated within 24 hours
- Digested manure is applied at 1x agronomic rate for nitrogen


Methodology for NH₃ Emission Measurements from Land Application Trials


Digested dairy manure is applied to an alfalfa field using a 12,000 L tanker

Ammonia concentration in air downwind of applied digested manure is measured continuously using open path lasers



Wind direction and atmospheric stability is simultaneously monitored

Measured ammonia concentrations and wind statistics are incorporated into a backwards lagrangian stochastic modeling technique to estimate the rate of ammonia emissions

Preliminary Results

- Ammonia emissions begin immediately after application and peak about 3 hours after land application was started
- NH₃ emissions continue for 36 hours later at very low rates

Research Study Outcomes

- Quantify CH₄ and NH₃ emissions from farms with biodigesters.
- Recommendations to improve on-farm management of raw and digested manure that minimize methane emissions.
- Improve efficiency of CH₄ flaring.
- Recommendations for land application of digested manure that minimize ammonia emissions.