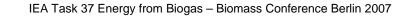
Energy Efficiency in Energy Crop Digestion


Based on an Evaluation of 41 Austrian Full Scale Biogas Plants

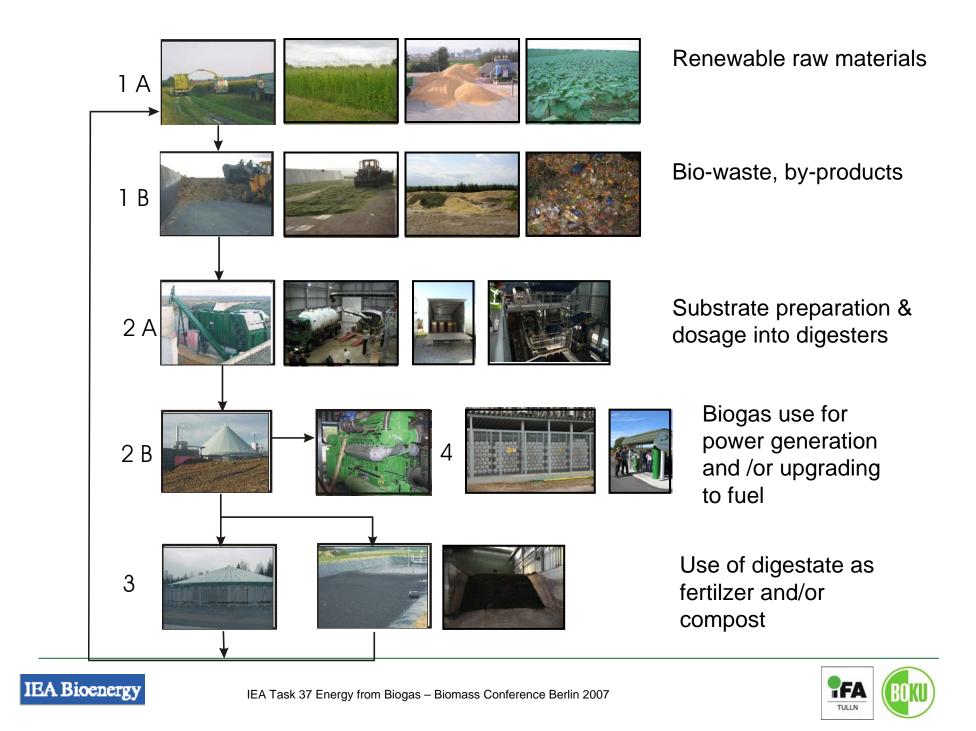
Rudolf Braun and Michael Laaber

Institute for Environmental Biotechnology Interuniversitary Department for Agrobiotechnology IFA-Tulln University of Natural Resources and Applied Life Sciences Vienna

Berlin, May 2007

CONTENTS

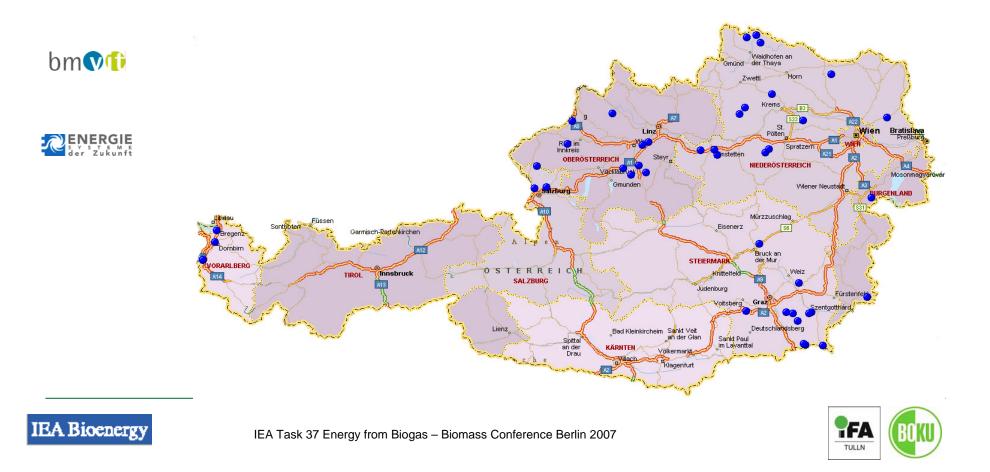
- Introduction Digestion Plant Examples
- Energy Crop Digestion
- Process Evaluation in Austria
- Energy Efficiency of Biogas Plants
- Conclusions





IEA Task 37 Energy from Biogas – Biomass Conference Berlin 2007

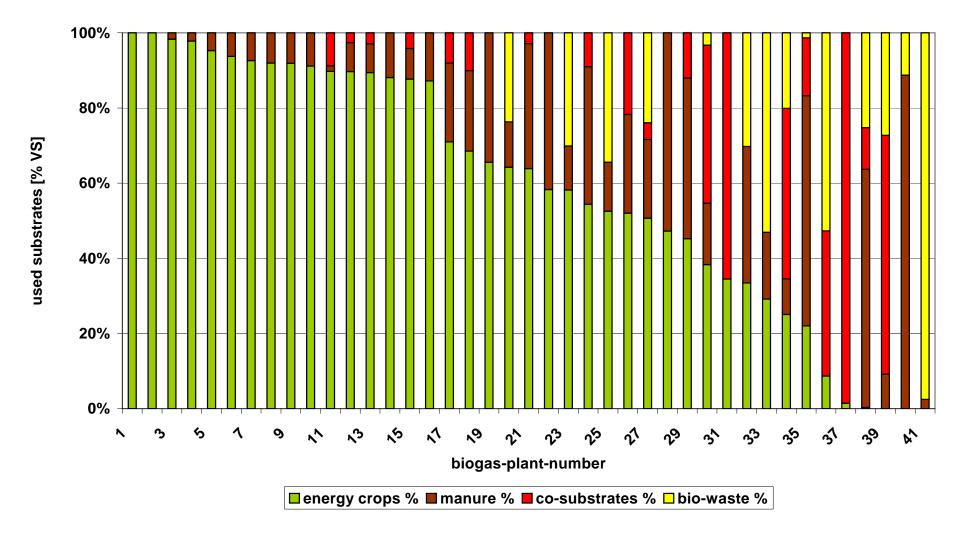
IEA Bioenergy



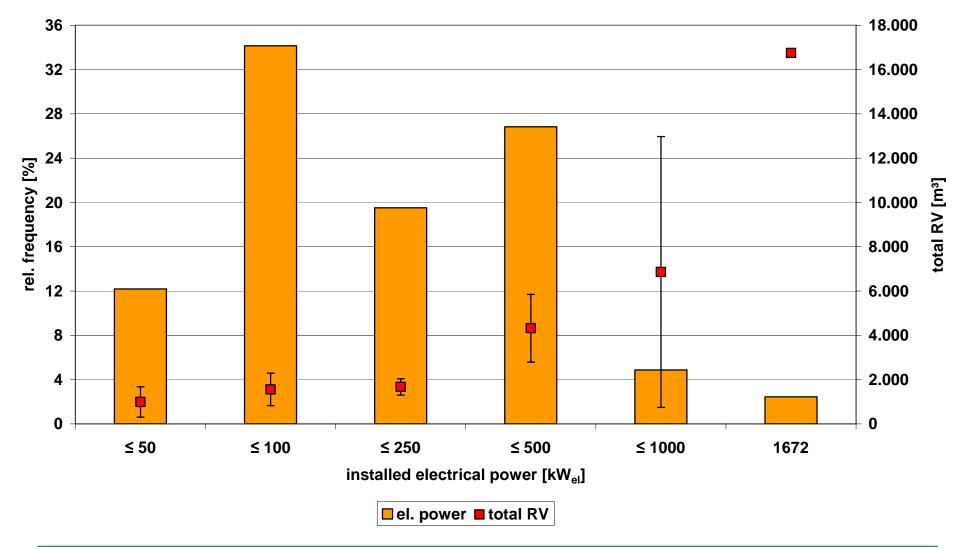
Development of an evaluation system for biogas plants

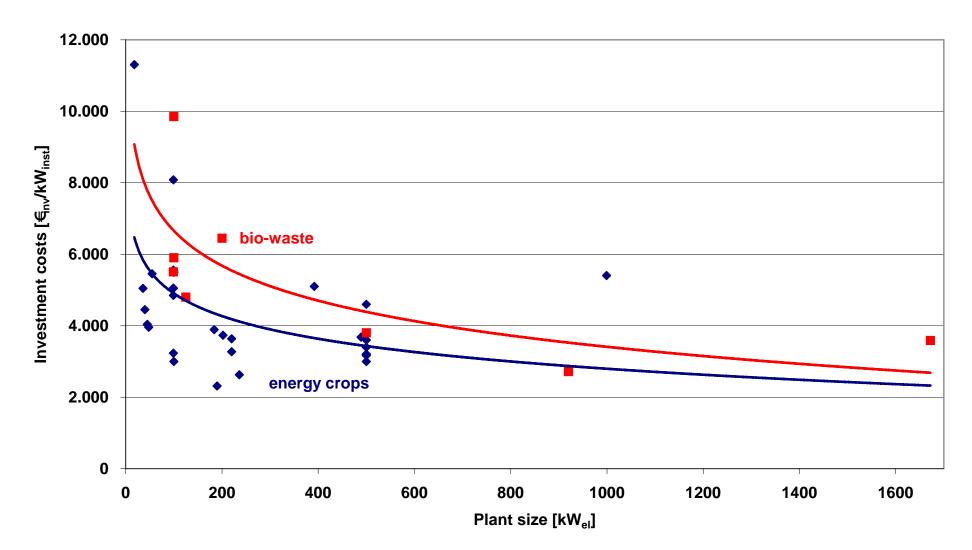
"Ecolabel Biogas"

(BMVIT EdZ Project-No 807742)


Parameters used in efficiency evaluation of biogas plants

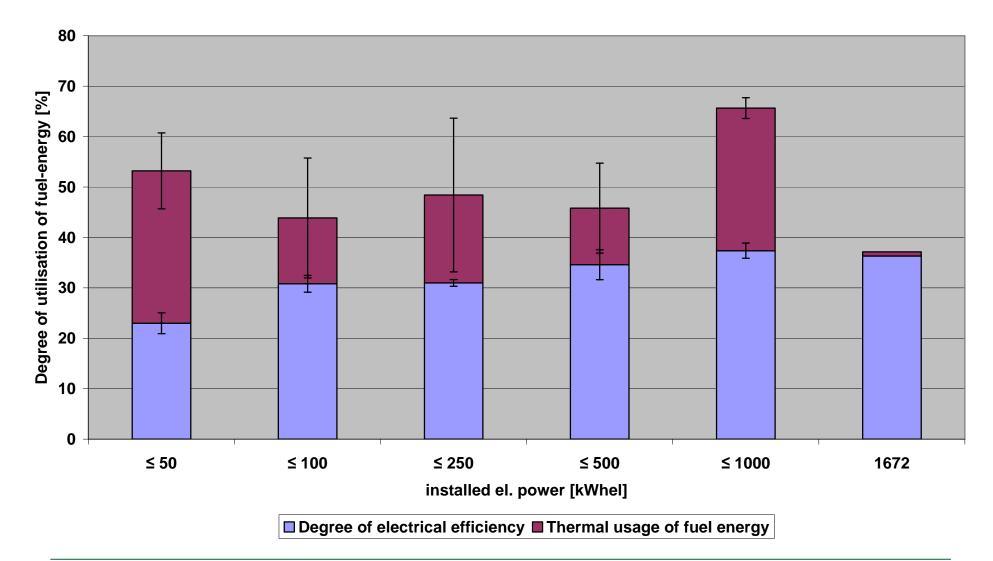
General functional description	Measurable process conditions	Calculable variables			
SUBSTRATE					
Quality / quantity	COD^1	t / year			
Transport	TKN^2 , NH_4 -N	Costs/year			
Storage	TS^3 , VSS^4				
Pretreatment					
Costs					
	DIGESTER				
Startup	T, Self heating	Residence time			
Investment costs	pH, VFA ⁵ ,	Hydraulic loading			
Subsidies	COD, TS, VSS	VSS degradation			
Annual costs	TKN, NH ₄ -N	Biogas yield			
Process steps	Process energy demand				
Substrate dosage	Sludge recirculation				
Digester type					
Digester equipment					
Digester mixing					
	DIGESTATE				
Storage type / cover	pH, COD, TS, VSS	t / year			
Treatment / Dewatering	VFA, TKN, NH ₄ -N				
Use	CH ₄ -formation				
	Hygienic status				
	BIOGAS	_			
Gas holder	CH_4, H_2S	Calorific value			
Upgrading		Electrical efficiency			
Quantity /utilisation		Degree of utilisation of hea			
P	ERSONNEL EXPENDITUR	RE			
SALES R	EVENUES / OVERALL ECO	ONOMICS			


Used substrates (% VS)



Plant size (kW_{el}) and reactor volume (RV)

Investvestment costs

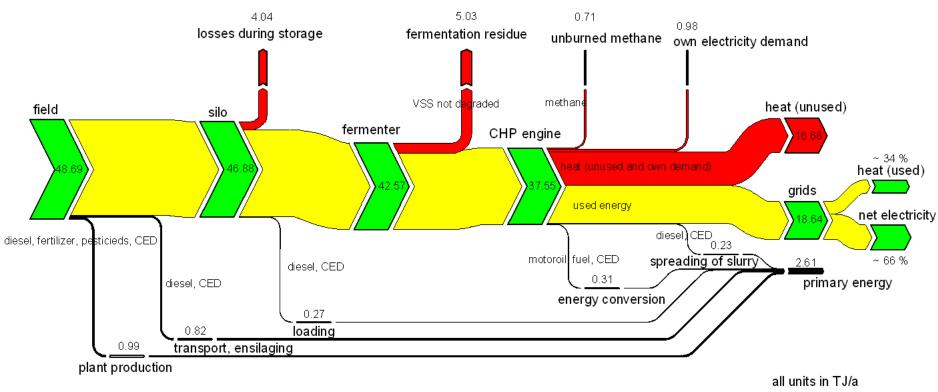

Energy Efficiency

- Electrical Efficiency
- Thermal Efficiency
- Energy Balance (Output : Input) (5 selected biogas plants)

Utilisation of fuel energy

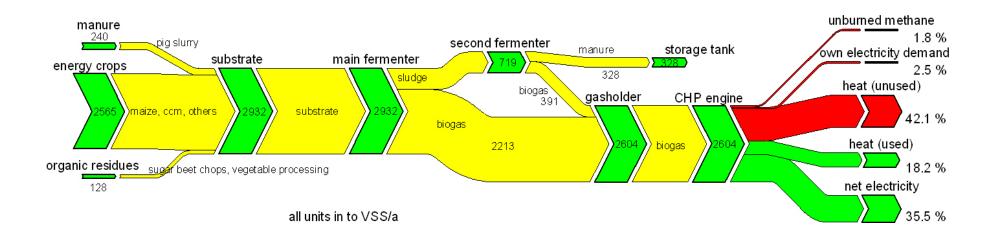
Cultivation Fertilizer Ensilage Silo cover Dosage Process energydemand On-site power Motor oil demand Methane losses Digestate use

Pestizides


Transport

Plant 1	Plant 2	Plant 3	Plant 4	Plant 5
Maize & other plants, agricult. by- pro- ducts, manure No use of synthetic fertilizer 2-step plant 500 kW _{el}	Only renewable biomass (Maize, grass), no manure Synthetic fertilizer appl. (base fertilising) 2-step plant 500 kW _{el}	Oil seed residues, Fat trap contents, waste from food & feedstuff industry; waste food, beet sugar by-products; renewable biomass on occasion 2-step plant 1.672 kW _{el}	Mainly manure (62 % cattle- and pig manure) Food leftovers and potato slops; 2-step plant 200 kW _{el} (ignition oil applied in CHP)	Conventional manure treatment (90 % pig manure and chicken litter), small amounts of fat trap contents Gas displacement system with hydraulic mixing 18 kW _{el} (η CHP only 22 %)

Energy flow during energy crop production-, digestion- and energy use


CED – Cumulative Energy Demand

Mass flow (VS) during energy crop production-, digestion- and energy use

	Pla	Plant 1		Plant 2		Plant 3		Plant 4		Plant 5	
	Maize & agric. By- products, manure No synth. fertilzer, 2-step plant, 500 kW _{el}		Maize, Clover grass, no manure, Synthetic fertilizer, 2-step plant, 500 kW _{el}		Biowaste, Renewable raw materials on occasion 2-step plant, 1.672 kW _{el}		manure (60%), Food leftovers, Destill. slops 2-step plant 200 kW _{el} (Ignition oil in CHP)		Manure (90%), Fat trap contents; 18 kW _{el} (η CHP only 22 %)		
	Input	CED	Input	CED	Input	CED	Input	CED	Input	CED	
O:I Power/Heat	17.8	8.1	14.7	6.7	20.9	9.9	2.4	1.1	30.9	14.7	
O:I Power	11.7	5.4	10.5	4.8	20.9	9.9	2.1	1	14	6.7	
O:I Power/Heat	18.7	8.6	14.7	6.7	8.7	4.1	2.5	1.2	34.4	16.5	
O:I Power	12.4	5.7	10.5	4.8	8.7	4.1	2.2	1.1	15.7	7.5	
	infl deg	O:I-ratio severely influenced by the <u>degree of heat</u> <u>use</u>			O:I-ratio severely influenced through <u>transport</u> <u>energy</u> demand		O:I-ratio severely influenced through <u>use of</u> <u>ignition oil</u>		Favour- able O:I- ratio in <u>manure</u> <u>digestion</u>		

Comparative < Output : Input > - Efficiencies of Bioenergies

Plant oil*	3.2			
Biodiesel*	3.9			
Ethanol*	1.25-2			
BtL*	7.9			
Hydrogen*	4			
Biogas*	2.7			
Own measurements (including CED **)				
Plant 1 (Renewables & agric. by-products)	8.6			
Plant 2 (Renewables)	6.7			
Plant 3 (bio-waste, partly. renewables)	4.1			
Plant 4 (manure, Co-substr., ignition oil CHP)	1.2			
Plant 5 (manure)	16.5			

*) Data source: FNR (2006); **) Cumulative Energy Demand

Conclusion

- Energy balance (Output : Input) in Biogas production is favourable compared to other bio-energies (e.g. ethanol)
- Favourable Energy efficiency achievable even in manureor bio-waste digestion
- Considerable potential for AD efficiency improvement e.g. Heat use, Degradation efficiency, Reliable process technology...

Thank you for your attention!

Acknowledgement

This research work was kindly supported by the Austrian Federal Ministry of Infrastructure & Traffic and the Ministry of Trade & Industry

Staff members

Dipl.Ing. Michael Laaber

