# Local societies and the potential economic impacts of investments in biogas plants





#### Presentation

- Henning Jørgensen,
- Associate Professor, Department of Sociology, Environmental and Business Economics, University of Southern Denmark.
- Research focus: Socioeconomic analysis of resource related investment projects in a regional perspective. Renewable energy transformation and local communities.
- Research methods: Socioeconomic Input output analysis and cost benefit analysis for employment, income generation and the local tax base. Dynamic renewable natural resource investment models.



### Main research questions

- Which income- and employment impacts can be expected from an expansion of bio-gas production in the relevant parts of the country?
- In which way is the expected biogas expansion tied to the areas with rural district periphery problems?
- In what way may the expansion of bio-gas production have an influence on such items as the tax base, which constitutes the basis for public service and thereby on settlement in local communities in the periphery?
- Which impacts may the expansion have on the business sectors which are supported by the activity of the biogas plants?



#### Why is biogas of interest in a rural and periphery perspective?

- Expectations for Bio-economy as an activity for the periphery.
  - Close to resources
  - Back to the future\*
  - Value chains with bio-economic products (IO)
- Limited success with other bio-economy activities
- Political interest in implicit assistance for the agricultural sector and rural districts



\*Moreno-Cruz, J.& M. Scott Taylor (2012): Back to the Future of Green Powered Economies. NBER. 2012.



#### How did we work with the analysis?

#### Four possible approaches:

- Agricultural business economics approach and Incentives.
- Socioeconomic approach and Costs and Benefits
- Impact analysis and employment and income generation
- Regional economics basis model analysis and service sectors.



#### Production, planned and in terms of distance optimally placed new common biogas plants





#### Supply from selected renewable sources, PJ



#### Source Dst.dk. ENE2HO

Note: 2012 8% of Raw mater.  $^{\sim}$  4,4 PJ -> 50%  $^{\sim}$  27,5 PJ in 2020 Excl. other sources



#### Key figures for IFRO's "Case 2012" plant





#### Choice of the basis for estimation of economic impact

- An aim of 50% recycling in 2010 implies 900 thousand tons available. (Birkmose et al, 2013).
- Comparable to the 2012 level of recycling of 8% or 145 thousand tons dry matter to assess the requirements for the 50 % recycling aim.
- For the calculation an assessment was made of the dry matter requirements for 10 % of the biomass potential in 2020, i.e. biomass of ca. 180,000 tons.
- To be considered either as extra 10 % ambition compared to the 50 % aim or as the consequence of a modification of the ambition to an aim of 40 % of resource base



#### Composition of input in Case 2012 plant.

|        | Input          | Share, pct. | Dry<br>pct. | matter |
|--------|----------------|-------------|-------------|--------|
| Cattle | Sludge         | 36          |             | 7,5    |
| Pigs   | Sludge         | 42          |             | 4,9    |
| Cattle | Fiber fraction | 5           |             | 30     |
| Pigs   | Fiber fraction | 7           |             | 30     |
| Maize  |                | 10          |             | 33     |
| Total  | pct.           | 100         |             | 11,3   |
| Total  | 1000 tons      | 256         |             |        |

Source: Jacobsen et al, 2013.





- Case 2012 has an input of on average 11.3 % dry matter of 255,500 tons or 28,851 tons, according to the table above.
- 10% is maize with a dry matter content of 33 % or 8.480 tons so that ca. 21 thousand tons of the dry matter originates from manure.
- So 8,8 plants of the case 2012 type would cover the capacity needed to use 10 % of the biomass potential for farm manure in 2020.



#### Costs in biogas plants for 10 % of biomass potential base in 2020.

| Cost structure           |           |
|--------------------------|-----------|
|                          | Costs     |
| Use in production        | 1000 Dkr. |
| Electricity              | 12.602    |
| Maintenance              |           |
| Pumps                    | 1.124     |
| Macerator                | 225       |
| Stir                     | 1.124     |
| Struvit cleaning         | 450       |
| Removal of sand          | 562       |
| Maintenance gas cleaning | 1.760     |
| Other use materials      | 440       |
| Water e.a.               | 440       |
| Other tech. analysis     | 440       |
| El & control             | 2.640     |
| Other maintenance        | 2.640     |
| Total maintenance        | 11.845    |
| Own transport            |           |
| Wages                    | 16.680    |
| Fuel                     | 11.224    |
| Other transport expenses | 8.096     |
| Total transport          | 43.410    |
| Transport re-investment  | 4.972     |



Source: Own calculations based on Jacobsen et al (2013)



#### Employment shares in industries 2015





## Economic impact per year of an expansion of common biogas plants by 10% of the resource base in 2020.

|                                              |            | Income<br>generation    | Tax<br>revenue             |
|----------------------------------------------|------------|-------------------------|----------------------------|
|                                              | Employment | Gross<br>Value<br>Added | Indirect and local income- |
|                                              | FT Persons | Mio. Dkr.               | Mio. Dkr.                  |
| Direct impact on biogas plants               | 103        | 31                      | 8                          |
| Input for plants, direct and indirect impact | 58         | 33                      | 11                         |
| Induced impact via consumption               | 49         | 31                      | 10                         |
| Total                                        | 209        | 95                      | 29                         |



#### Supported activity

Not covered in the estimation of direct and indirect impact of biogas plants.

- Agriculture
  - Primary sectors exogenized
  - Reciprocal supply
- Food processing
  - Slaughter plants
  - Diaries
  - Other food processing



## Direct and indirect impact of biogas plant activity and supported activity





#### Supported activity in agriculture.

Indirect impact at suppliers for agriculture

**Direct impact in agriculture** 

Total

**Induced impact via consumption** 



2326



3916

#### Supported activity in Slaughter Plants.



|                                   | Income<br>Generation | Employment |  |
|-----------------------------------|----------------------|------------|--|
|                                   | Gross Value Added    | <b>-</b>   |  |
|                                   | Mill. Dkr.           | FT Persons |  |
| Direct impact in slaughter plants | 701                  | 1706       |  |
| Indirect impact                   | 241                  | 426        |  |
| Induced impact via consumption    | 789                  | 1310       |  |
| Total                             | 1703                 | 3442       |  |







#### Supported social activity

Not covered in the quantitative estimations of employment and income generation

- Cooperation between agriculture, heat and power plants and consumers
- Innovative environment
- Cohesion
- Investments, continual upgrading
- Attraction of funding from innovation and cohesion funding
- Change in industry structure
  from primary to service sectors
- Export opportunities
- Local and regional service sectors in consulting etc.







#### Status April 2017

Source: Energistyrelsen ens.dk. Biogasproducenter i Danmark.





