Biorefinery, the bridge between Agriculture and Chemistry

Utrecht 22 September 2005

Johan Sanders
Professor Valorisation of Plant Production Chains
Wageningen University and Researchcenter

An Outlook & Questions to be answered

- Can energy production, transport fuels and base chemicals, based on plant breeding and processing, compete with production based on fossile materials?
- High volume chemicals or just bulk energy?
- Is there enough biomass? Where is the best place on earth? Netherlands, Poland, Developing World?
- Should there be one general intermediate or should we benefit from the synthesis opportunities in plants?
- Small scale or large scale operations?
- Who will take the lead?

There will be enough Biomass for 15% energy substitution (2050)

		% landarea WW	EJ/year	
Non collected Straw	(50 %)	12*	75	
Collected waste processing	(50 %)	12*	45	
'Invisible' losses	(50 %)	15*	75	
Forest / pastures	(10 %)	2*	150	
Dedicated Crops land (sea)	(3 %)	3 (1 %)	300 (300)	
Total		12 - 20 *	645 (945)	
* More or less the same area		Total energy required (2050) 1000 EJ		

Biomass can have different applications and contributions..

	Integral cost prices (€/GJ end product)	Raw material cost <i>fossile</i> (€/GJ)	Netherlands energy is 3000PJ
Heat	4	3 (coal)	+/- 20%
Electricity	22	6 (coal)	+/- 20%
Transport fuel	10	8 (oil)	+/- 20%
Average bulk chemicals	75	30 (oil)	+/- 20%
Rest			+/- 20%

Biomass can bring different contributions to the farmer (€/ha)

Assuming a yield of 10 tonnes dry weight per hectare, being 160 GJ, (or 20 tonnes whole crop yield, 320 GJ/ha)

€/hectare

•All Energy at coal value : 640 ---

•All transportfuel :1360 ---

•All bulkchemical :6400 ---

•20% bulkchemical, 80% Energy :1800 - *3600*

20% bulkchemical, 20% fuel, 60% Energy :1940 - *3880*

Using all crop and good agricultural practices up to double values could be obtain

The separated components of grass value 700 - 800€/to as compared to 50 – 70 €/ton raw materials

Pilot biorefinery line Foxhol (Groningen) (Prograss

Consortium)

New routes to industrially important

1,2-Ethanediamine: rubber chemicals, pharma, lubricants, detergents

Costs breakdown of Bulkchemicals (€/ton) at 40\$/bbl

	<u>non-functionalised</u>	<u>functionalised</u>
Raw materials	200	650
Capital	300-500	400-650
Operational	50	50
Recovery	50-100	50-100
Total	725	1300

Functionalised chemicals can be made from Biomass without major enthalpy differences, but not from naphtha **Enthalpy** C_xH_zN C_vH_zN amine $C_xH_zO_v(OCH_z)_v$ C_xH_v C_xH_v lignin $C_xH_vO_z$ naphtha oil / fat C_xH_zO_vN S_v C_xH_zO protein $C_xH_zO_v$ **Biomass** Oil / gas carbohydrate **Petrochemical way** chemicals **Biorefinary way** many products one raw material many raw materials

Biorefining will give Mitigation under Economic

Condition 50,8% world land

75 billion €
60 €/ton biomass
minus 1200 Mton CO₂

97 billion €
80 €/ton biomass
minus 1200 Mton CO₂

180 billion €
140 €/ton biomass
minus 1500 Mton CO₂

Developments that will improve the biomass

- L book Raw material prize
- better refinery technologies
- GMO to tailor make products
- new material-properties
- small scale technology and integrations that can give more income to the farmer

Using the potential components of Potato

Lysine (%) in mature transgenic potato tubers

constructs: 35S-DHPS (= pAAP 103) and GBSS-DHPS* (= pAAP 105)

Project: BIOFOAM (EU KP5, QLK-1999-

G6al298elopment of new polymers (poly(ester)amide) based on renewable feedstocks for industrial foam applications

Results

- Successful integrated synthetic route(s) from a biobased origin:
- ■1,2-ethanediamine, 1,4-butanediamine, 1,2-ethanediol, 1,4-butanediol, adipic acid, ϵ -caprolactone.
- Monomer quality (purity) acceptable for polymer applications
- Successful polymer formation for foam applications.

Small scale (pre) processing technology

Advantages

- less transport
- short recycle streams
- •new integrations (energy, organisation, labour,..)
- product and chain innovations

Disadvantages:

•Economy of scale?

Examples:

- cassave
- grass
- •multifold application of energy?

Forward integration reduces tranport cost and seasonality and will give more income to the farmer

Small scale offers innovative heat generation

Mobile Cassava starch refinery in Africa

Source: Duteso

Conclusions

- Biorefinery increases the value of the individual biomass components (cf Pigs are not converted all to meatballs!)
- (platform) chemicals can be derived from biomass under economic conditions. For the moment functionalized chemicals offer the best chances to compete with petrochemical processes
- Small scale (pre)processing offers economic advantages and potential forward integration to the farmer
- Energy production can optimalise the biorefining of biomass to chemicals and fuels

Afsluiting

© Wageningen UR

Benutting van bulkchemicaliënwaarde verhoogt

grondstofwaarde van biomassa van 60 naar 140 €/ton

	Eindwaarde (G€)	(fossiel) grondstof waarde	Fossiel €J/y input	Mtonnen biomassa input	€/ton biomassa
Bulkchemicaliën	375	90-120	15-20	250	360-480
Ethanol	75	45	7.5	500	90
Elektriciteit	80	30	7.5	500	60
Totaal	525	65-195	30-35	1250	130-150

6 €/GJ = 50 \$/bbl

4 €/GJ = kolen

