Workshop Energy Crops & Biogas – Pathways to Success, Cropgen/IEA Bioenergy, 22.9.2005 Utrecht, The Netherlands

Biogas from Energy Crops – Preliminary Results of Biomass Storage and Pre-treatment under Northern Conditions

Jukka Rintala, Annimari Lehtomäki, Outi Ronkainen, University of Jyväskylä, Finland

Methane from Energy Crops

Reasons for Pre-storing Biomass for Biogas Production

Short cultivation periods, storage needed up to 8 months

- Optimal methane yields per hectare with several harvesting times (methane yield / VS, biomass production per hectare)
- Energy produced when most optimum / needed

Methods for Pre-storing Biomass

- Aiming at low CH₄ potential losses (VS losses (nonstructural carbohydrates))
- Storage as a pre-treatment: improving methane yields and methane production rates
- Simple and low cost techniques and management
- Potentially different options (scale) for
 - farm-scale vs. centralised digesters
 - co-digesting vs. crop digesting plants
 - dry vs. wet processes

Post-storing Digested Biomass for Biogas Production

- Reasons for (covered) post-storing digested biomass
 - Only short periods (3-4 months) potential for land application
 - No other use for the digestate than land application.
 - Recovery of remaining methane potential, prevent methane losses / emissions
- Post-storing digested biomass
 - Up to 8-9 months, sufficient capacity
 - Simple and low cost structures at ambient temperatures
 - Stimulate methane recovery:
 - Post-treatment before post-storage
 - Low cost passive heating systems to increase temperature
 - Different options for farm-scale vs. centralised digesters and for co-digesting vs. crop digesting plants

Storage of Crop Biomass

- Traditional methods: drying, ensiling
- Drying

High losses of organic matter, subjectivity to weather conditions, dry material not suitable for biogas production

- Ensiling: soluble carbohydrates contained in plant matter undergo lactic acid fermentation: → pH drop → Inhibition of growth of detrimental micro-organisms
- The process can be controlled by
 - Preventing the growth of all micro-organisms (e.g. acids)
 - Stimulating the growth of lactic acid bacteria (e.g. bacterial inoculum or enzymes)

Storage trials

- Storage of timothy-clover grass and rye grass as silage in bales for 3-8 months in field conditions with and without additives
- Systematic follow-up of the chemical characteristics, CH₄ potential and mass
- Finally, after 6-8 month storage co-digested with manure in farm digester

Storing – laboratory studies

- Grass (75 % timothy *Phleum pratense*, 25 % meadow fescue *Festuca Pratensis*), 30 % TS, VS/TS 0,9, lignin 15 % of TS, 0.23 m³CH₄/kgVS, 64.2 m³CH₄/tFW
- Stored in 5 L laboratory silos for 3 months at 20°C, and for 6 months at 20 and 5 °C without and with additives:
 - Formic acid
 - Enzymes
 - Xylanases and cellulases
 - Lactic acid bacteria
 - Lactobacillus rhamsonus and Propionibacterium freudenreichii
 - Mixed culture from a farm biogas reactor

Specific methane yields (per original VS)

Storing Grass - Results

- Storage without additives led to losses of 17-39 % in methane potential.
- Most additives increased the initial methane yields (partially acting as substrate) and decreased the methane potential losses during storage.
- Without additives storage time (3-6 months) and temperature (5 -20°C) had major impacts on methane potential, but not with additives.

Pre- /Post -treatment of Energy Crops

Objectives:

- Increase methane yields or / and methane production rates:
 - in biogas digesters: 35°C, HRT 20-40 days
 - during post-storage/methanation (several months at 5-20°C)

Impacts:

- Increasing available surface area for microbial action
- Breaking polymeric chains to more easily accessible soluble compounds

Promoting subsequent biodegradation

Pre-treatment Laboratory Trials

- Substrate: timothy-clover grass (also tops of sugar beets, straw)
- Physical
 - autoclaving, water incubation
- Biological
 - enzymes, composting, white-rot fungi
- Chemical
 - Alkalis (NaOH, Ca(OH)₂+Na₂CO₃), peracetic acid

Pre-Treatment Results

- Alkali treatments (NaOH, Ca(OH)₂+Na₂CO₃)
 - -15 % increase in CH₄ yields
- Physical, biological, peracetic acid treatment
 - High losses of organic matter
 - No increase in methane yield

Publications

- Lehtomäki, A., Ronkainen, O. & Rintala, J. 2005: Developing storage methods for optimised methane production from energy crops in northern conditions. Proc. 4th International Symposium on Anaerobic Digestion of Solid Waste, 31.8.-2.9.2005, Copenhagen, Denmark, p. 101-108.
- Lehtomäki, A., Ronkainen, O., Viinikainen, T., Alen, R. & Rintala, J. 2005: Factors affecting methane production from energy crops and crop residues. Proc. 8th Latin American Workshop and Symposium on Anaerobic Digestion, 2.-5.10.2005, Punta del Este, Uruguay.
- Lehtomäki, A., Viinikainen, T. A., Ronkainen, O. M., Alen, R. & Rintala, J. A. 2004: Effect of pre-treatments on methane production potential of energy crops and crop residues. Proc.10th World Congress on Anaerobic Digestion, 29.8.-2.9.2004, Montreal, Canada, p. 1016-1021.
- Lehtomäki, A., Viinikainen, T., Alen, R. & Rintala, J. 2003: Methane production from energy crops and crop residues: Effect of harvest time and chemical composition. Proc.Int. Nordic Bioenergy Conference, 2-5 September 2003, Jyväskylä, Finland, p.198-200.
- Lehtomäki, A., Viinikainen, T. & Rintala, J. (submitted): Screening boreal energy crops and crop residues for methane biofuel production.
- Viinikainen, T., Lehtomäki, A., Ronkainen, O. & Rintala, J. (in prep.): Effect of chemical pre-treatments on anaerobic digestion of energy crops and crop residues.