

NL Agency Ministry of Economic Affairs, Agriculture and Innovation

Biogas Situation in the Netherlands

Workshop Task 37 IEA-Bioenergy Moss 19 April 2012

> Mathieu Dumont NL Agency

Contents

- State of the art in biogas development; statistics
- Approach Green Gas production with Gas Grid injection
- Results of evaluation of the biogas sector in NL during 2011
- Legislation (feed-in tariff system and law on fertilizers)

Share and target Renewable Energy The Netherlands

Development of biogas production

innovation and international

Distribution of bioenergy projects (www.b-i-o.nl)

Ambition for Green Gas (vision document Dec. 2007 ppc group)

Short-term target: 1-3% replacement of natural gas by upgraded biogas Mid-term target: 8-12% replacement of natural gas in 2020 (4 billion Nm3/y), inclusive SNG production from biomass Long-term: Up-scaling to 50% replacement of natural gas by Green Gas in het gas grid

Milestones in Green Gas production: Approach Green Gas development in NL

- Medio 2006: start of a working Group "Green Gas" in a public-private-cooperation model
- December 2007: Publication of a Vision Report with general conclusions on ambition and pre-conditions for the development of a Green Gas market
- April 2008: First Publication of a stimulation programme (SDE) with feed-in tariff for biogas upgrading and gas grid injection
- July 2009: Operation of virtual trade system for Green Gas certificates
- December 2009: Installation of a Governmental speed-up team to "solve" legislational barriers for Green Gas development
- January 2010: Publication of an Action Plan
- March 2011: first publication of the speed up team Green Gas
- December: 2011: second release report speed-up team

Approach of speed-up team Green Gas (in the production chain)

innovation and international

Approach in legeslation

In fertilizer act:

Positive list of biomass which can be used as co-substrate in co-digestion

Alternative route for proving avoidance of environmental risks of digestate application as fertilizer (summer 2012; based on a quality assurance system)

Energy law:

Feed-in subsidy: biogas in CHP application max. 15 €ct/kWh, but a bonus possible if produced heat is used effectively (until now about 140 MWe)
Feed-in tariff biogas upgrading with grid injection max. 62 €ct/Nm³ co-digestion (until now: 300 miljon Nm³/y).

New approach (2012): Support by government based on green deals approach (leading approach is the private initiative).

Evaluation of the biogas sector in the NL in 2011

class A: co-digestion < 500 kWe class B: co- digestion between 500 and 1000 kWe class C: co- digestion ≥ 1000 kWe class D: other digestion (no codigestion of manure)

Distribution of the average annual input in the AD-sector in NL

Input distribution only of co-digesters

Disposal routes for the different end products. The figure also represents the mass distribution of the different end products of AD

Distribution of the end products over the different disposal routes per class

[»] Focus on sustainability, innovation and international

N.

Tonnage disposed of in 2010 by the participating co-digesters as function of the input mixture

Type of manure in input	Internal use ton/year	External use the Netherlands ton/year	External use foreign countries ton/year	
> 80% pig manure ¹				
	77 701	347 523	196 677	
> 80% cattle manure ¹				
	269 127	205 040	20 350	
mix of pig and cattle manure				
	39 800	103 530	0	
Sum of all co-digesters				
	386 628	656 093	217 027	
1 expressed o	n total share of manure			
	» F	» Focus on sustainability,		

17

innovation and international

Distribution of the different operating costs in function of the year of construction of the installation

Profit/loss of the representative installations during the last 3 years

Overview of the most mentioned categories of bottlenecks with the participating AD-operators

Distribution of main biomass resources

Dutch approach to develop a competitive Green Gas sector

Developing innovation contracts:

-Digester type 1.0

Optimisation of performance and sustainability

-Digester type 2.0:

With combination of applications in the production chain, for example: biogas hubs or increasing efficiency in combination with disctrict heating systems.

-Digestor type 3.0:

Close the loop in the digestion chain (cradle to cradle approach) including fertilizers in manure and co-substrates.

Green gas certified supply

Increasing E-efficiency by installing an ORC-unit

Good practice example (Biogas project Polderwijk Zeewolde with 5 km biogas pipeline to the nearby village)

Vision Agriculture sector: Two possible pathways for the future

- small scale digestion on farms
- manure treatment with mineral recovery (including digestion?)
- Discussions of the use of recovered minerals as artificial fertilizer in the future (now in pilot phase)

Treatment of digestate UF and reverse osmosis

Small scale digester based on mono(manure) digestion (+/- 40 kWe)

Total view of the farm with a "microferm" digester

Other pathways for using biogas: Filling stations biofuels (blue and green with gas supply)

lle brandstoftypen 🥯	
Alle brandstoftypen	
🔵 Aardgas / Groengas	
😑 Biodiesel	
Bio-ethanol	
Waterstof	
O Nog te realiseren	

 pdf file: Download de pdf file met alle tankstations.

томтом

Voeg de locatie van alle tankstations direct toe aan je tomtom door de knop hieronder te gebruiken.

 ov2 file: het is ook mogelijk een losse ov2 file te downloaden en later op uw tomtom te plaatsen. Deze bevat alle aardgas/ groengas tankstations.

Mathieu.dumont@agentschapnl.nl www.acientschapnl.nl

