Modern technologies of biogas upgrading

Anneli Petersson, Dr. Swedish Gas Centre

Biogas upgrading

Utilization of upgraded biogas

Anneli Petersson, 2009-08-24

Environmental benefits – biogas as vehicle gas

- Biogas is renewable low CO₂-emissions
- 25 % less CO₂-emissions for natural gas compared to petrol
- Lower emissions of: NO_x, SO_x, particles
- Simultaneous production of biogas and fertilizer
- Decreased methane emissions compared to traditional manure storage

Biogas upgrading

Biogas upgrading plants in the Task 37 countries

Gas composition

		Biogas	Landfill gas	Natural gas (Danish)
	Methane (vol-%)	60-70	35-65	89
	Other hydro carbons (vol- %)	0	0	9.4
	Hydrogen (vol-%)	0	0-3	0
Compounds	Carbon dioxide (vol-	30-40	15-50	0.67
Com	Nitrogen (vol-%)	~0.2	5-40	0.28
	Oxygen (vol- %)	0	0-5	0
	Hydrogen sulphide (ppm)	0-4000	0-100	2.9
	Ammonia (ppm)	~100	~5	0
	Lower <	6.5	4.4	11.0
	heating value			
	(kWh/Nm³)			

Swedish standard

- Particles < 1 μm
- Methane 97+/- 2 %
- Water < 32 mg/Nm³</p>
- $CO_2, O_2, N_2 < 5\%$
- Oxygen < 1 vol %
- Sulphur
 < 23 mg/Nm³
- N (except for N_2) expressed as $NH_3 < 20 \text{ mg/Nm}^3$
- Odorised
- Compressed to 200 bar

For grid injection: Addition of propane to reach the enegry content of the Dansih natural gas (around 7-9 vol% is added)

Cleaning

Water

Hydrogen sulphide • Precipitation in digester

Oxygen

Nitrogen

Ammonia

Siloxanes

Particles

- Adsorption
- Absorption
- Biological treatment

Upgrading

- PSA
- Water scrubbing
- Organic physical scrubbing
- Chemical scrubbing
- Cryogenic
- Membranes
- Technologies under development

PSA

- Pressure Swing Adsoption
- Activated carbon or zeolites
- Regeneration by decrease in pressure
- Several vessels in parallell

Water scrubbing

- Carbon dioxide dissolves in water
- Methane dissolves to a much lower extent
- Dissolved methane recovered in flash tank
- Water regenerated in desorption column

Anneli Petersson, 2009-08-24

Organic physical scrubbing

 Similair to water scrubbing, but carbon dioxide is absorbed in an organic solvent such as polyethylene glycol instead of water.

Chemical scrubbing

- Carbon dioxide binds chemically
- Selective reaction
- Low methane losses
- MEA or ETA in the liquid
- Regeneration by heating

Cryogenic

- Seperation by cooling
- Carbon dioxide removed as solid or liquid
- If cooled further liquid methane gas is formed

Other upgrading technologies

- Membranes
- Technologies under development
 - In situ methane enrichment
 - Ecological lung

Schematic view of in-situ methane enrichment research plant. (Courtesy of Åke Nordberg, SLU, Sweden).

Upgrading - cost

Urban W, Girod K, Lohmann H. Technologien und Kosten der Biogasaufbereitung und Einspeisung in das Erdgasnetz. Ergebnisse der Markterhebung 2007-2008. Fraunhofer UMSICHT. 2008

Methane losses

Conclusions

- Biogas is upgraded for utilization as a sustitute to natural gas or as a vehicle fuel
- The treatment of the biogas can be divided into cleaning and upgrading
- Upgrading technologies
 - PSA
 - Water scrubber
 - Organic physical scrubbing
 - Chemical scrubbing
 - Cryogenic
 - Membranes
- Other technologies in research phase
- Many aspects, such as economical and environmental, have to be considered when plants are evaluated, or new plants are under planning

www.sgc.se

anneli.petersson@sgc.se

+46 40 6800764