

Biogas Upgrading - An Introduction

Arthur Wellinger Nova Energie Ltd. Leader Task 37

www.ieabioenergy.com

IEA Bioenergy presently engulfs 12 Tasks:

- Task 29: Socio-Economic Drivers in Implementing Bioenergy Projects
- **Task 31: Conventional Forestry Systems**
- **Task 32: Biomass Combustion and Co-firing**
- **Task 33: Thermal Gasification of Biomass**
- **Task 34: Pyrolysis of Biomass**
- Task 35: Techno-Economic Assessments for Bioenergy Applications
- Task 36: Energy from Integrated Solid Waste Management Systems
- Task 37: Energy from Biogas and Landfill Gas
- Task 38: Greenhouse Gas Balances of Biomass and Bioenergy Systems
- Task 39: Liquid Bio-Fuels
- Task 40: Sustainable International Bioenergy Trade
- Task 43: Biomass feedstocks for energy markets

Member countries participating in Task 37: Energy from Biogas and Landfill Gas

Switzerland: Arthur Wellinger (Task Leader)

Austria: Rudolf Braun

Canada: Jody Anne Barclay

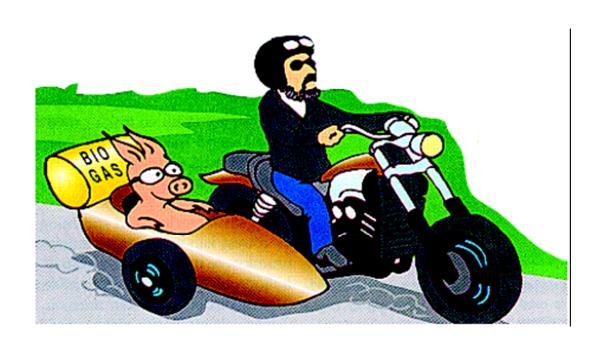
Denmark: Jens Bo Holm-Nielsen/ Teodorita Al Seadi

EC: David Baxter

Finland: Juka Rintala

France: Olivier Théobald, ADEME

Germany: Peter Weiland, FAL


Sweden: Anneli Petersson

Netherlands: Mathieu Dumont

UK: Claire Lukehurst

Upgrading of Biogas

Definition

Biogas cleaning:

Removal of undesired trace substances from the biogas like minerals, sulphide, ammonia, etc.

Biogas upgrading:

Removal of CO2 to reach natural gas like quality

Biomethane:

Natural gas like, upgraded biogas for grid injection or vehicle fuel

Biogas conditioning: Requirements of utilizers

Application	H ₂ S	CO ₂	H ₂ O	Silox- ane
Heating	< 1'000 ppm	no	no	no
Cooking	yes	no	no	no
Engine (CHP)	<u><</u> 500 ppm	no	no condensati on	yes
High pressure compression	yes	recommend ed	yes	no
Grid and fuel quality	yes	yes	yes	Event ually
Hot fuel cells	yes	No	No conden- sation	yes

Hydrogene Sulfide Removal

- Air/Oxygen dosing into the digester
- Biological oxidation on a filter bed
- Iron oxyde sponge
- Iron chloride dosing into the digester
- Activated carbon
- Scrubers (water, amines or glycoles)

Biological Oxidation

$$H_2S + \frac{1}{2}O_2 = H_2O + S^\circ$$

Chemical/physical removal:

- Iron chloride dosing into the digester
- Adsorption on iron oxide
- Adsorption on activated carbon

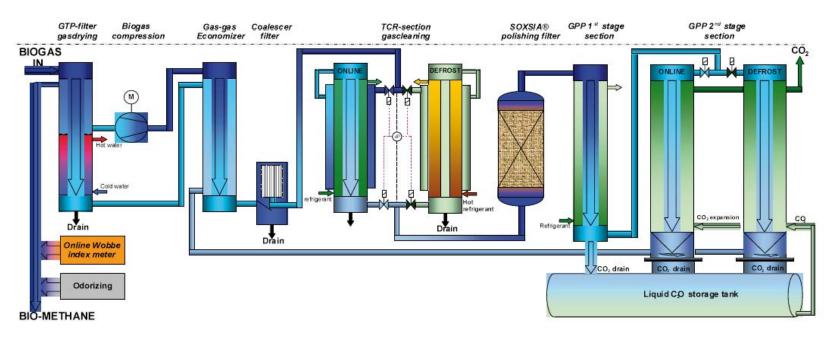
Biogas upgrading:

CO2 removal with physical scrubbers: Water & organic solutions



PSA with activated carbon

Chemical binding (MEA, DEA)


Membrane separation:

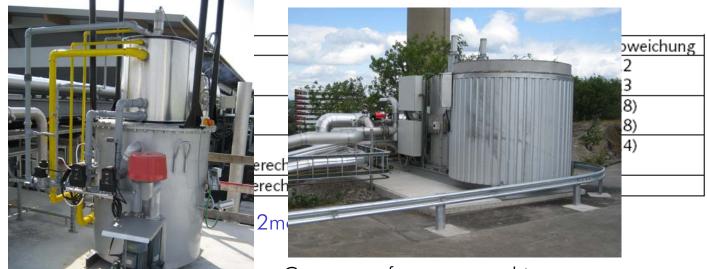
Cryogenic gas upgrading

Compressed to 17-26 bar

Cooled to -25°C

Removal of water, hydrogen sulphide, sulphur dioxide, halogens and siloxanes

Cooled to -50 to -59°C, then to -65°C or lower


What are the bottle necks?

- Methane emission (slip)
- Market volume
- Trade
- Regulation

Methane emission – The solutions

Upgrading w/o slip

Flox burner after PSA

Converter after water scrubing

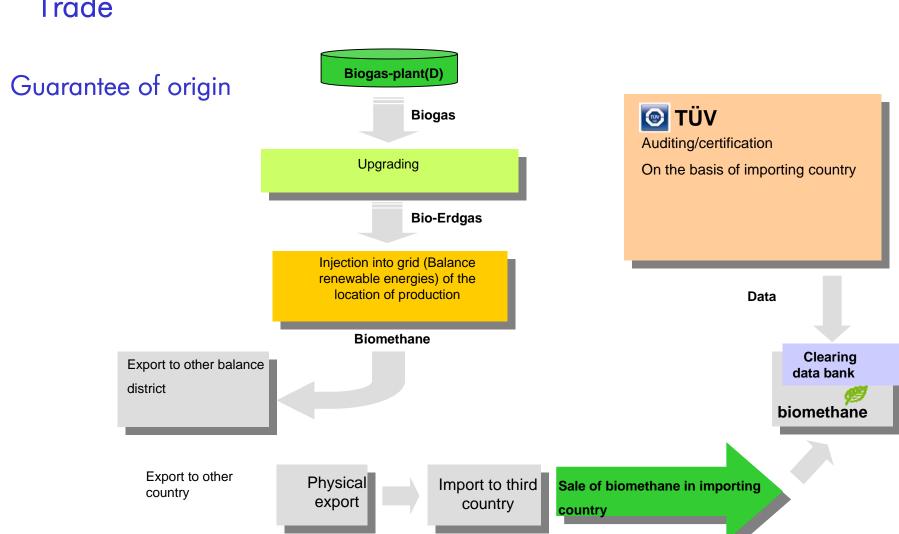
Utilisation of CH4 in off gas

Market volume

Landi B 100 1.5 5 selfwash erdgas_{tanken}

A low price helps a lot!

Marketing


Testimonials

Are you old fashioned?

Trade

The **Swan Label** was initiated in 1989 in Sweden and Norway. The Label is managed by the Nordic Eco-labelling Board. It covers 25 product groups, e.g. washing machines, freezers, etc. Since 2008 Biomethane.

Advantage: Well established

Disadvantage: No independent audit,

no pure biomethane (min. 35%)

Bmp greengas is a private company. Trade since 2007 (trade platform). Created an own label. Audited by TüV

Disadvantage: No independent management

Europe's top label (together with o.k. power) for electricity. Since 2008 label for renewable heat and biomethane. Mangaged by an independent association. Audited and

labeld by

Regulatory restrictions

Germany: - Limited access due to feed-in tariff

- Preference for CHP

Italy: - No gas injection allowed so far

Austria: - Only biomethane from agricultural origin

U.K.: - Stringent requirements for oxygen (< 0.2%)

France: - Hygienic limits (no gas injection for WWTP & landfills

- Chemical restrictions

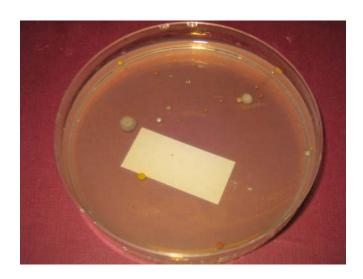
→ so far no gas injection possible

Quelle est la quantité de bactéries dans le biogaz

La quantité de bactéries est relativement peu variable, environ 10⁶ bactéries totales / m³ de biogaz.

Environ une bactérie du digesteur sur 10¹² se retrouve dans le biogaz.

Air: 10⁷ bactéries par m³



1,5.10³ à 1,7.10⁵ UFC/m³ dans le biogaz d'un CET (rapport 2000, Réseau Santé Déchets).

Dans le biogaz, environ une bactérie sur 100 est cultivable.

Source: Marina Moletta

0.4 m3 natural gas

0.4m3 air during test

Source: University of Lund & SGC

0.5 m3 upgraded biogas

Microbes in biogas from landfills & WWTP

- > Biologicals were found in both natural gas samples and biomethane samples from nearly all sources. However, it appears that there are more live bacteria in natural gas samples than in biomethane samples.
- Spores are present in both natural gas and biomethane samples.
- > Total bacterial counts indicate that MIC bacteria are present in both natural gas and biomethane.

Source: Diane Saber, GTI

GTI looked also in the dangerous chemicals

Category	LF2 Biomethane	LF3 Biomethane	NG	WWTP1 Biomethane
Ammonia	BDL(<0.001%)	BDL(<0.001%)	BDL(<0.001%)	BDL(<0.001%)
Extended Hydrocarbons				
-Cycloalkanes	Cyclopentane, Methylcyclopentane; Cyclohexane	Oyclopentane; Methylcyclopentane; Cyclohexane; Methylcyclohexane	Cyclopentane; Methylcyclopentane; Cyclohexane; Methylcyclohexane	BDL (< 0.0001 mol%)
-Aromatics	BDL (< 1ppmv)	Benzene	Benzene, Toluene, Ethylbenzene; m,p-Xylene; o-Xylene; C3 Benzenes	BDL (< 0.0001 mol%)
-Paraffins	Hexanes	Hexanes; Heptanes	Hexanes, Heptanes; 2,2,4-Trimethylpenta ne; Octanes; Nonanes; Decanes	BDL (< 0.0001 mol%)
Organic Silicons	BDL (< 0.5 ppmv Si)	BDL (< 0.5 ppmv Si)	BDL (< 0.5 ppmv Si)	BDL (< 0.5 ppmv Si)
TO-14 Halocarbons	Dichlorodifluoromethane (CFC-12), 1,2-Dichlorotetrafluoroethan e (CFC-114); Trichlorofluoromethane (CFC-11); Chloroethane, Chloroethene (Vinyl Chloride);	Dichlorodifluoromethane (CFC-12), 1,2-Dichlorotetrafluoroethan e (CFC-114); Trichlorofluoromethane (CFC-11); Chloroethane, Chloroethene (Vinyl Chloride);	BDL (< 0.1 ppmv)	BDL (< 0.1 ppmv)
Mercury	BDL (< 0.02 µg/m3)	Yes*	BDL (< 0.02 µg/m3)	BDL (< 0.02 μg/m3)
Volatile Metals	Zinc	BDL (< 30 μg/m3)	Zinc	Zinc

The future for biomethane looks bright – but there is still a long way to go!

Thank you