

ENABLERS AND CHALLENGES – INDIAN COMPRESSED BIOGAS (CBG) INDUSTRY

Identifying and removing obstacles to a potential growth story

Is India ready for a Biogas revolution?

- Acceptance and potential
- Supply chain maturity

- Commercial viability
- Ecosystem readiness

ISSUES TO A COMMERCIAL SUCCESS CASE REMAINS BUT EXPECTATIONS OF QUICK REDRESSAL IS LIKELY

April 2023

1.	Foreword	01
2.	Introduction to Compressed Biogas Industry: Need – Potential – Enablers	02
3.	Primary Insights and EAC Analysis	05
	I. Feedstock for CBG: Availability – Sourcing – Challenges	05
	II. CBG Offtake: Offtake Models – Challenges	07
	III. Fermented Organic Manure: Need – Value add	10
	IV. Role of Carbon Credit	15
3.	Case Studies	21

ABBREVIATIONS

ACR	American Carbon Registry
ACX	Air Carbon Exchange
AIJ	Activities Implemented Jointly
BCM	Billion Cubic Meter
C:N ratio	Carbon Nitrogen Ratio
CAR	Climate Action Reserve
CBG	Compressed Biogas
CGD	City Gas Distribution
CBGPF	Compressed Biogas Producers Forum
ССС	Carbon Credit Certificate
C-CCC	Converted - Carbon Credit Certificate
CCTS	Carbon Credit Trading Scheme
CDM	Clean Development Mechanism
CIX	Climate Impact X
CNG	Compressed Natural Gas
СОР	Conference Of The Parties
СТХ	Carbon Trade Exchange
DAP	Di-Ammonium Phosphate
ETS	Emission Trading Scheme
FCO	Fertiliser Control Order
FOM	Fermented Organic Manure
GAIL	Gas Authority Of India Limited
GHG	Greenhouse Gases
GOBARdhan	Galvanizing Organic Bio-Agro Resources Dhan
GS	Gold Standards
ICAR	Indian Council Of Agricultural Research
IFGE	Indian Federation Of Green Energy
IOC	Indian Oil Corporation
KP	Kyoto Protocol
LNG	Liquefied Natural Gas
M-CCC	Mandatory - Carbon Credit Certificate
MDA	Market Development Assistance
MLPD	Million Litre Per Day

MMBtu	Metric Million British Thermal Units
MMSCMD	Million Metric Standard Cubic Meters Per Day
MMTPA	Million Metric Tons Per Annum
MSW	Municipal Solid Waste
NPK	Nitrogen, Phosphorus, Potassium
OC	Organic Carbon
0-CCC	Offset - Carbon Credit Certificate
OGMC	Oil & Gas Marketing Companies
ОМС	Oil Marketing Company
ОТС	Over The Counter
PAT	Perform, Achieve and Trade
PNGRB	Petroleum and Natural Gas Regulatory Board
PROM	Phosphate Rich Organic Manure
REC	Renewable Energy Certificate
REDD+	Reducing Emissions From Deforestation And Forest Degradation ("Plus" refers to "Role Of Conservation, Sustainable Management of Forests And Enhancement of Forest Carbon Stocks in Developing Countries)
RO	Retail Outlets
RSP	Retail Selling Price
SATAT	Sustainable Alternatives Towards Affordable Transportation
SOC	Soil Organic Carbon
SSP	Single Super Phosphate
TPD	Tons Per Day
UNFCCC	United Nations Framework Convention On Climate Change
VCS	Verified Carbon Standards

EAC conducted interviews with 31 stakeholders from the Compressed Biogas industry (including biogas producers, OMCs, distribution network, policy makers and institutions) to collect on-ground information on industry dynamics, challenges, success factors etc.

Serial	Company Name	Interview Partner
1	Carbon Masters	Mr. Kevin Houston
2	Carbon Masters	Mr. Somnarayan
3	Spectrum Energy	Mr. Mohan Rao
4	Noble Exchange Environment	Mr. Nuriel Pezarkar
5	Sampurn Agri	Mr. Sanjeev Nagpal
6		Mr. Ashish Kumar
7		Mr. Ashish Singh
8	Verbio	Mr. Chetan Swaroop
9		Mr. Sushil Verma
10		Mr. Pankaj Jain
11	GPS Renewable	Mr. Varun Karad
12	Indian Oil Adani Ventures	Mr. Atul Kharate
13		Mr. Vivek Kumar
14	Farm Gas Private Limited	Mr. Abhinay Dadwal
15		Interviewee decided to remain anonymous
16	Atmos Power	Mr. Palaash Tarapore
17	Atlantic, Gulf & Pacific Company	Mr. Sanjit Suman
18	(AG&P)	Interviewee decided to remain anonymous
19	IO Adani Gas Private Limited	Mr. Naveen Parmar
20	South Pole	Mr. Rohit Garg
21	EVI	Mr. Rachit Verma
22	Enking	Mr. Rohit Vakkalagadda
23	Banaskantha	Mr. Priyank Mehta
24	Spectrum Energy	Mr. Mohan Rao
25	Haldia Petrochemicals	Mr. Shubham Jain
26		Mr. Kshitij Sandhya
27	IOCL	Interviewee decided to remain anonymous
28		Interviewee decided to remain anonymous
29	Ever Enviro	Interviewee decided to remain anonymous
30	GAIL	Interviewee decided to remain anonymous
31		Interviewee decided to remain anonymous

CBGPF-IFGE and EAC thanks all the interview partners for their immense contribution!

Mr. Ramakrishna Y.B

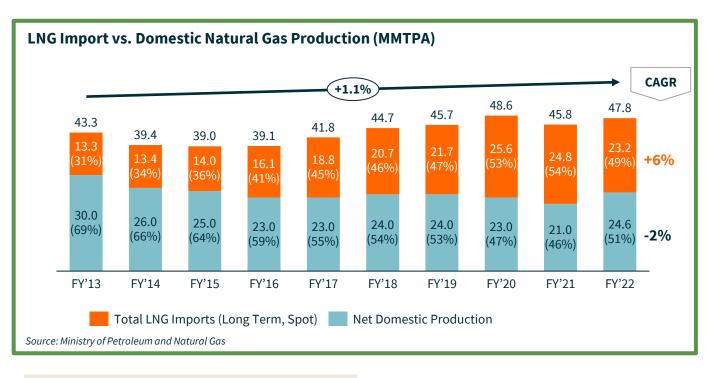
Member - Working group on Bio Fuels at Ministry of Petroleum and Natural Gas Govt of India India has more than 130 years of Biogas history since the first ever plant was built in Matunga, Mumbai. Biogas as cooking fuel has been known in this country ever since and in the last few decades for industrial heat and electricity generation too.

India considered upgraded biogas or compressed biogas (CBG) as transport fuel only under SATAT (Sustainable alternatives to Affordable Transportation) launched in Oct 2018 by the Ministry of Petroleum & Natural Gas. SATAT is a very ambitious program which aims at replacing a minimum of 35% of the total fossil gaseous fuels being consumed in the country as of today. India has the necessary resources (feedstocks), technologies, huge market and an aggressive policy framework. Despite the best efforts by all stakeholders the program is yet to gain acceleration towards achieving the potential.

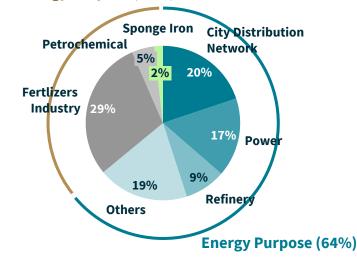
The report attempts to identify the hurdles and challenges the sector is facing and the policy interventions needed to bridge the gap through a thorough consultative process with major stakeholders. I congratulate the EAC team as well as the IFGE CBG Producers Forum for this stupendous initiative.

Mr. Ketan Jadhav Partner, EAC India ketan.jadhav@eac -consulting.de +91- 9664145856

Indian GDP is expected to grow at CAGR of 6%-7% during 2024-30 to become 3rd largest economy in the world by 2030. With rapid growth of infrastructure, urbanisation, and overall economy, India's energy demand is expected to grow significantly in coming years. India's future energy strategy has high emphasis on green sources including biogas as one of the major potential contributor.


Indian compressed biogas industry has tremendous potential to reduce import bills of natural gas and crude oil as well as to reduce government subsidy bills on chemical fertilisers. India's CBG potential is estimated around 40 to 60 MMTPA as per various studies, considering different feedstocks available across country. We expect 15% to 20% realisation of potential (8-12 MMTPA) in next 7-8 years pushed by successful implementation government policies and efforts of industry stakeholders.

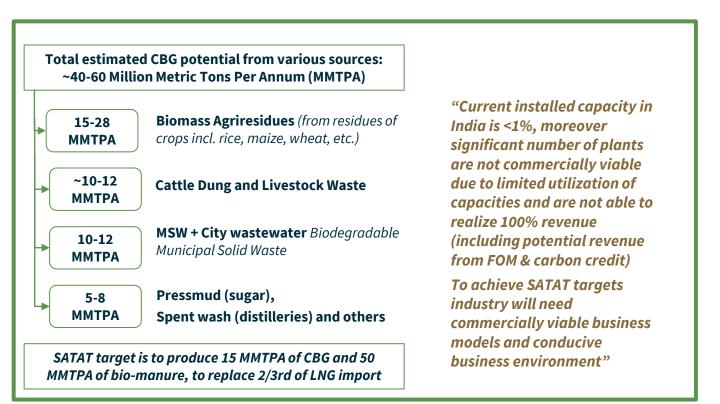
As a knowledge partner of Compressed Biogas Producer's forum, EAC is delighted to publish the report covering CBG industry potential, key enablers, success factors and challenges of CBG industry based onground information collected from key stakeholders.



Need: Compressed biogas (CBG) an imperative to reduce import dependence

India is world's 3rd largest energy consumer, and its energy demand is expected to rise significantly in next 15-20 years. Approximately 50% of its natural gas requirements are met by imports. It spent USD 11.9 billion on import of 32 billion cubic meters of LNG in 2021-22. This compared to USD 7.9 billion spent on import of 33 bcm of gas in the previous fiscal and USD 9.5 billion on import of 33.9 bcm in 2019-20. Approx. 3x increase in LNG spot price over the last 2 years driven by supply-demand situation and geo-political reasons is mandating the use of CBG as an alternate to CNG for achieving supply and price stability.

Sector wise Natural Gas Consumption, FY'22


Non-Energy Purpose (36%)

Compressed biogas (CBG) is an excellent alternate to support energy requirements met by natural gas and crude oil (transport fuel).

Acknowledging its role to reduce import dependence, the Indian government announced a budget Rs 10,000 crores, for Galvanizing Organic Bio-Agro Resources Dhan (GOBARdhan) scheme. This scheme aims to install 500 new bio-CNG plants that will generate compressed biogas from organic waste. **INTRODUCTION TO CBG INDUSTRY** Need – Potential – Enablers

Potential: India CBG potential is estimated at ~40-60 MMTPA – Installed capacity is <1%

Agri waste, livestock waste, MSW, and pressmud are the 4 categories of feedstock which is majorly contributing to current production and potential of CBG in India.

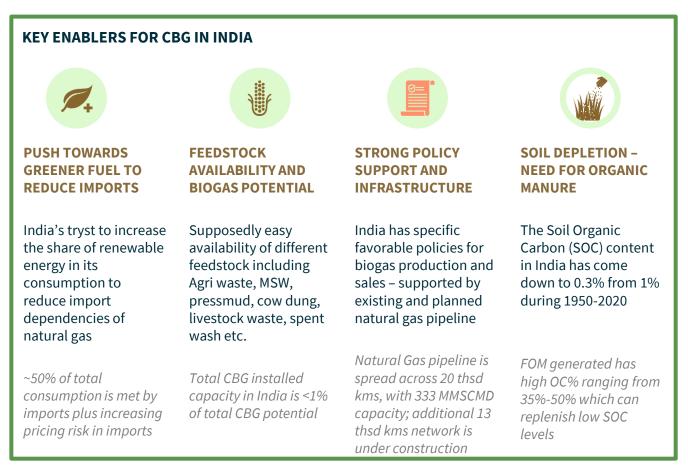
The efficiency of biogas production from different feedstocks depends on the substrate characteristics and process conditions. Agri waste and Napier grass have better yields of around 8-12%, however Napier grass is not majorly cultivated in India for biogas production.

The significant portion of biogas potential is being lost due to burning of agri residues and improper segregation of municipal solid waste. Also, another potential roadblock to utilize fullest potential of biomass for CBG would be other end use applications are such as co-firing at coal-based power plants.

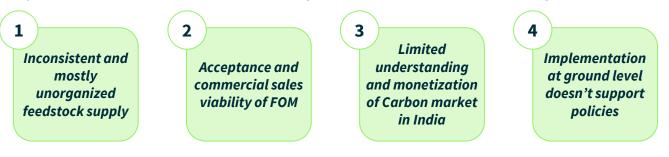
Agri Residue

MSW

Pressmud



INTRODUCTION TO CBG INDUSTRY Need – Potential – Enablers


Enablers

Growth of biogas market in India is pushed forward by favorable conditions including feedstock and technology availability, policy support and government focus.

India however has not been able to scale its production and usage of CBG even with multiple positive enablers mainly because of the still shaky commercial viability of large-scale projects, and the mismatch between policies and ground reality faced by value chain stakeholders including producers, oil marketing companies (OMCs), government institutions etc. As of today, possibility of ubiquitous expansion remain distant, but speedy resolution of some of the challenges can re-jumpstart the biogas revolution in the country.

Major work needs to be done to improve the on-ground implementation of the following 4 topics:

PRIMARY INSIGHTS AND EAC ANALYSIS Feedstock for CBG

Overview

India has a wide range of feedstocks available, the most used feedstocks includes agricultural residue, municipal solid waste (MSW)/ sewage sludge and animal waste.

With significant biomass quantity and better yields, agri residue contributes more than 1/3rd of the total CBG potential in India. However, the supply is seasonal and varies region to region based on crop cultivation patterns. Rice and wheat crops has higher contribution to agri residue, while other crops includes mustard, groundnut, castor, maize, soybean, gram, and tur.

Municipal solid waste is another key feedstock for biogas generation, however, to achieve higher yields segregation is done properly.

To understand the feedstock situation and its actual potential, EAC conducted interviews with select CBG producers across India using different/ mixed feedstocks. These interviews have highlighted key success factors and challenges of CBG producers to ensure regular and high-quality supply of relevant feedstocks.

FEEDSTOCK YIELD

With yield in the range of 8–15% (normally) and can be as high as up to 20-25%, agri residue is the most productive feedstock. MSW, spent Wash and press mud all range in between 3–5% whereas animal manure averages <3%; individual animal manure yields do vary and can go up to 7–8%

"Use of MSW should be for CBG generation and not for power since the revenue from power is too low, even accounting for the volumetric difference between the production of the two "

- Somnarayan, Carbon Masters

PRIMARY INSIGHTS AND EAC ANALYSIS Feedstock for CBG – Aggregation, Continuity and Security

EAC has assessed parameters related to availability, aggregation, transport and yield of the feedstock to evaluate the stability of the supply structure and the associated bottlenecks.

	STOCK TYPES & RAMETERS	&		∕∭ MSW		部 们前 ANIMAL WASTE	
	Туре	Agri	Agri + Industrial	Agri + Animal waste	MSW incl. food waste	Pressmud	Cattle manure, Poultry etc.
٩	CBG Producers examples	Verbio, Farmg	gas, Sampoorr	na Agri etc.	Ever Enviro, Noble Ex, Carbon Masters	Spectrum	Banaskantha, Solika Energy
	Aggregation model	Aggregation is a Aggregation mo 1. 100% Integ 2. 100% Procure feedstock stored 3. Hybrid	dels rated, Owned ment via Aggi	& Operated	 Supplied by waste management companies & Municipality at No Cost Or on Revenue basis Some pay annual royalty to Municipal corp. and MUST sell CBG at lower than market price 	Backend integrated; Own plantation	Procures cattle dung within 10- 20 km radius
<u>نې</u>	Aggregation CAPEX Demand	Up to 30% of project with reinvestment every 5-6 years			None		
	Biogas yield (%)		8 to 20+%		4 to 5%	4 to 6%	1 to 2%

In the absence of a uniformly implemented structure, market players across feedstock type are struggling to ascertain continuous and cost-effective access to quality feedstock.

٠	Input form	Bales of size ranging between 20 kgs to 400- 500 kg	Properly segregated form	Loose direct from sugar mills	Fresh Cattle dung in semi solid format
Ø	Input quality	 Moisture as most critical quality factor targeted <20% Cut form direct from farms ideal to optimize pre-treatment (possible for large round / square bales only) High compression to ensure long term & durable storage 	Segregated organic content		Requirement of feedstock free of sand and silt
>>>	Supply feasibility	Seasonal supply / Diversified crop mix Needs to be stored for rest of the year Continuous supply feasibility	Fairly continuous on daily basis; No storage necessary	Dependent on sugar mills; Inconsistent supply	Continuous daily supply
<u>555</u>	Pre- treatment	 Unbailing, loosening of bales Shredding No pre-treatment needed for pressmud 	No pre-treatment required if well segregated	No pre-treatment needed	Sieving

Uninterrupted supply of feedstock with minimal cost fluctuation and maintenance of minimum quality pose the biggest challenge to biogas producers in India irrespective of the type of feedstock utilized.

PRIMARY INSIGHTS AND EAC ANALYSIS CBG Offtake – Common models

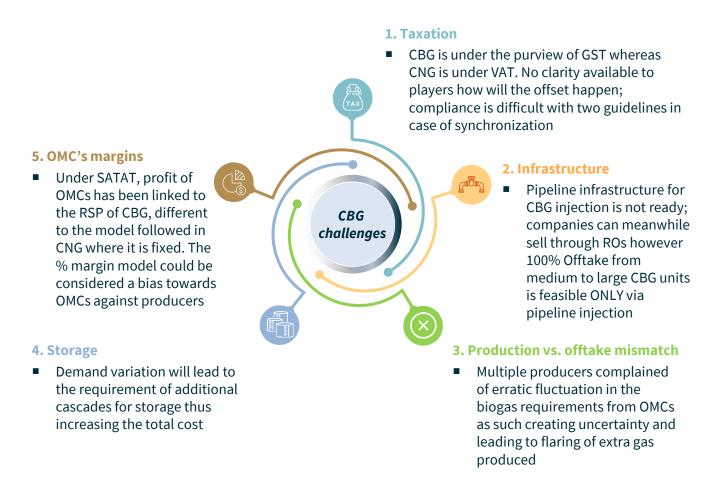
Offtake plan through SATAT model is pragmatic and expectations of speedy implementation are high due to one party involvement; compensating biogas producers for compression would go a long way in incentivizing the acceptance further.

UNDER SATAT SCHEME	 Long term offtake agreements with the Oil & Gas marketing companies (OGMCs) to sell the CBG to them by cascades to the OGMC retail outlets (ROs) or mother station Availability of cascades require extra cost but the same is not compensated by the Oil & Gas companies (OMCs) so the overall enthusiasm is low
CBG-CGD SYNCHRONIZATION	 Model employed by GAIL has offtakes through retails outlets as well as injection into pipelines however very few cities have completed the CBG-CGD synchronization till date Charges for compression is paid to the producer making it attractive to pressurize the gas up to 250 bar for injection PNGRB guidelines compliance is necessary in addition to IS 16087
AGREEMENT WITH MUNICIPAL CORPORATION	 Since disposal of MSW is a major problem but the responsibility of the municipal corporations, they enter into an agreement with biogas producer for the supply of segregated solid content which can be used as a feedstock for biogas. The producer might give preferential offtake to the municipal corporation/ at a concessional rate Segregated waste is delivered free of cost by municipal bodies; some municipal corporation though are earning royalty from the CBG producer in exchange Along with the municipal corporation the CBG producer can sell the CBG directly into the market
STANDALONE MODEL	 CBG producer owns the captive power plant/ CBG sold to the power generation companies Some of the producers sell through their own retail outlets directly to the consumer and industrial customer

"On ground implementation of SATAT and CBG CGD Synchronization is still far away, companies are selling biogas through their own retail outlets which allows them maximum value generation"

- Multiple stakeholders

Injection to pipeline (both direct as well as decompression through cascades) hasn't been implemented on ground completely yet; biogas producers rather prefer to sell through other channels to minimize losses.


Offtake Scheme	SATAT (OI	MC)	CBG-CGD Synchronisation (GAIL)					
CBG Point of Sale	Retail Outlet		Retail Outlet		DCS Injectior (Decompress Pipeline		Direct Injectio Pipeline	on to
Commercial Implementer	омс				G/	AIL		
Technical/ Infra Implementer	омс			CG	D (City Gas Dist	ribution) Oper	ator	
Unit of Sale	on Weight basis INR Per Kg			Thermal Energy Content + Compression Energy (MMBtu)				
Compliance	IS 16087		IS 16087 + PNGRB Guideline					
Offtake Readiness	5-6 Months		Technically ImmediateUp to 6 Months:Existing CNG InfraDecompression Skid toutilisedbe implemented		6-24 Months Dependent on Pipeline readiness			
Logistic precondition	Upto	250 bar compre	ession via Casc	ssion via Cascade Up to 250 bar compression via Cascade			5-40 bar Compression into Pipeline	
Price to CBG Producer (excl.GST)	80% of RSP as per slab		1470/ MMBtu + 8/ kg (250 bar-compression)		1470/ MMBtu + 2/ kg (250 bar-compression)		1470/ MMBtu + 2/ kg (5-40 bar-compression)	
RSP of CBG	93 (1 st April'23)	87 (9 th April'23)	93	87	93	87	93	87
Price Realisation to Producer (excl. GST)	70.5	66.7	62.5 +	8 = 70.5	62.5 + ;	2 = 64.5	62.5 + 2	2 = 64.5
Commercial Terms		n Pricing CNG pricing	 Short Term; Clarity on validity of p Made inline to SATAT scheme 		oricing is missir model i.e. pric	ng. e realization o	f~80% at time	of launch of

CBG-CGD synchronization has issues of taxation as CNG falls under VAT umbrella whereas CBG is a part of GST, thus creating an accounting complication for players.

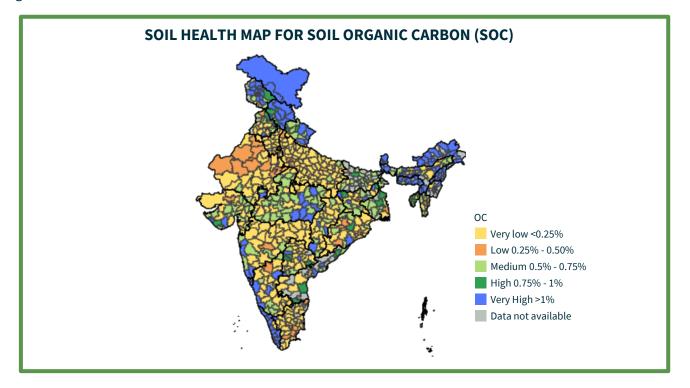
PRIMARY INSIGHTS AND EAC ANALYSIS CBG Offtake – Challenges

Implementation challenges are limiting the application of supportive policies and are needed to be fine tuned for the expected exponential growth to materialize.

SATAT scheme and the CBG CGD synchronization plan were introduced to facilitate biogas producers who need not worry about the offtake, but the implementation is creating dissatisfaction amongst the producers who believe they have got the short end of the deal owing to erratic demand expectations and price insensitivity.

"SATAT scheme and the CBG-CGD synchronization plan were introduced to facilitate biogas producers who need not worry about the offtake, but the implementation is creating dissatisfaction amongst the producers who believe they have got the short end of the deal owing to erratic demand expectations and price insensitivity."

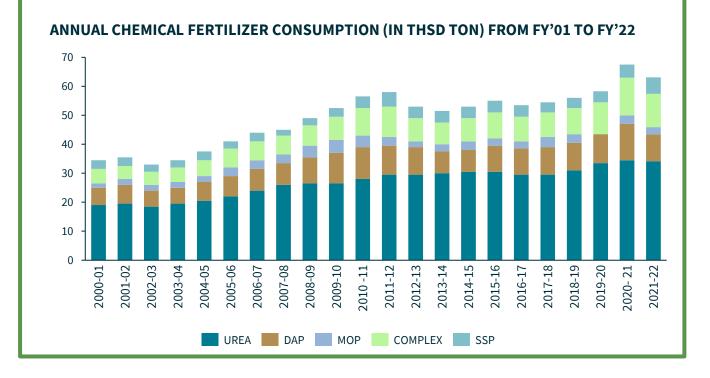
- Multiple producer companies' stakeholders

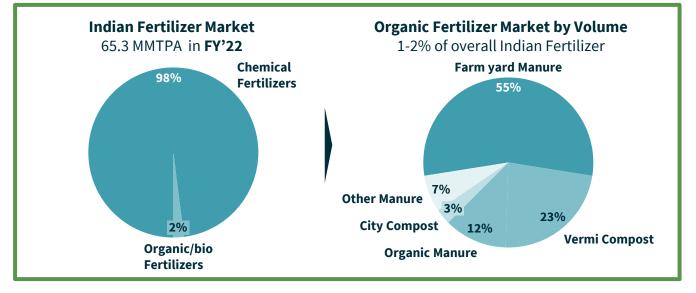


Soil health can be determined by percentage of organic carbon, macro- and micronutrients, and microand macro-organisms present in the soil, bulk density, water holding capacity, pH and electrical conductivity.

Disproportionate usage of NPK fertiliser, overuse of (N) fertilizer and aggressive crop cultivation has severely depleted the Indian soil of its organic carbon content.

85% of Indian soil is declared deficit in organic carbon levels falling in the categories of 'very low', 'low' or 'medium', according to 'soil health map' published during the period of 2015–16 to 2018–19 by government sources.


- Organic carbon content, the main component of soil organic matter, has declined to 0.3% from 1% over the last 70 years
- Loss of soil organic carbon content limits soil's ability to provide nutrients for sustainable plant production. The main reasons for decline in carbon levels in Indian soil are:
 - Consumption of chemical fertilizers per hectare has been increasing in India
 - Crop pattern (wheat, rice rotation) both crops are heavy consumers of macro- and micro-nutrients
 - Expansion of irrigation facilities especially lifting the ground water through tube wells and pump sets


"The overuse of chemical fertilizers and the lack of use of organic fertilizer is deluding the soil of its natural carbon and the soil can't grow crops without carbon. FOM sellers are required to persuade farmers to buy organic fertilizers, make them understand why they need to use it and ultimately price influences their decision, and they have no incentive for buying"

- Kevin Houston, Carbon Masters

PRIMARY INSIGHTS AND EAC ANALYSIS Fermented Organic Manure – Fertilizer Consumption

- Consumption of chemical fertilizers has almost doubled to 64 MMTPA in FY'22 from 34.5 MMTPA in FY'01
 - Share of nitrogen to overall fertilizer is more than 50%
 - Over exposure of nitrogen reduces carbon content causing nutrient imbalance in the soil which ultimately impacts the soil quality resulting in lower yields
- Organic fertilizer occupies a negligible share of less than 2% of total fertilizer market share in India
 - Farmyard manure is the leading source of organic fertiliser Karnataka and Chhattisgarh are leaders

PRIMARY INSIGHTS AND EAC ANALYSIS Fermented Organic Manure (FOM) – Soil Replenishment

Fermented Organic Manure (FOM) produced through CBG plants, which work on principles of circular economy, can act as potential solution to replenish low SOC levels.

Using FOM from these units, will complete the carbon cycle. currently, approx. 220 TPD of FOM is generated through the operational CBG plants in India.

Moisture, C:N ratio, and pH in solid FOM are three parameters found to deviate as per the FCO norms across various feedstock used in CBG plants.

FOM generated has high OC ranging from 35-50% which can replenish low SOC Levels. Advantages include:

- Improved SOC levels can lead to soil replenishment by reducing nitrogen leaching
- Every increase of 1% soil organic carbon will reduce 100 thsd tons of CO₂ per acre from environment

i) Solid FOM specifications based on feedstock used and its comparison to FOM as per FCO¹⁾ Norms:

			Punjab	Punjab	Madhya Pradesh	Tamil Nadu	Punjab
			Agri-residue (Paddy straw)	Paddy straw compost	Organic fraction of MSW	Press mud & chicken litter	Press mud & paddy straw
Sr. No.	Parameters	FOM-FCO Norms	Results	Results	Results	Results	Results
(i)	Moisture% by weight	30-40% (max.)	65.5-78%	61.4%	45.1%	41.3%	67.7%
(ii)	NPK Nutrients - Total N, P2O5 and K2O nutrient should not be less than (on dry basis)	1.2%	2.0-3.3%	1.3%	4.1%	7.2%	2.1%
(iii)	Total Organic Carbon (minimum) on Dry Basis	14%	34-40%	50.5%	41.2%	26.7%	50.7%
(iv)	C:N Ratio	<20	36-54	130:1	32:1	8:1	26:1
(v)	Particle Size	Minimum 90% should pass through 4 mm IS Sieve	100% pass through 3.3 mm sieve	91% pass through 4.0 mm sieve	-	98% material pass through 4.0 mm sieve	100% material pass through 4.0 mm sieve
(vi)	рН	6.5-8.0	8.7	8.4	8.4	7.9	8.4
(vii)	Pathogens	NIL	-	Present	-	-	-
(viii)	Conductivity(as dS/m)not more than	4	0.3	3.7	4.8	2.6	0.3
(ix)	Arsenic as (As2O3)	10	Not detected	0.5	1.2	Not detected	Not detected
	Cadmium (as Cd)	5	Not detected	0.1	1.1	Not detected	Not detected
	Copper (as Cu)	50	8.0	2.4	47.8	49.3	21
	Chromium (as Cr)	300	8.3	Not detected	14.5	29.6	2.7
	Mercury (as Hg)	0.15	Not detected	Not detected	Not detected	4.9	Not detected
	Nickel (as Ni)	50	34.3	0.5	8.6	98.7	Not detected
	Lead (as Pb)	100	133	0.4	66.5	9.9	6.5
	Zinc (as Zn)	1000	71.8	10.1	145.7	187.4	70.4

1) Fertilizer Control Order

PRIMARY INSIGHTS AND EAC ANALYSIS Fermented Organic Manure (FOM) – Soil Replenishment

pH in liquid FOM is the parameter found to have deviated as per the FCO norms across various feedstocks used in CBG plants.

ii) Liquid FOM (Slurry) specifications for CBG plants & Liquid FOM as per FCO¹⁾ norms

			Paddy straw	Organic fraction of MSW
Sr. No.	Parameters	FOM-FCO Norms	Results	Results
(i)	Moisture% by weight	90-97% (max.)	97.8%	95.5%
(ii)	NPK Nutrients- Total N, P2O5 and K2O nutrient should not be less than (on dry basis)	1.2%	-	1.5%
(iii)	Total organic carbon (minimum) on dry basis	14%	0.6%	8.2%
(iv)	C:N Ratio	<20	-	-
(v)	рН	6.5-8.0	8.9	7.9
(vi)	Conductivity (as dSm-1) not more than	4	-	-
(vii)	Heavy metal content, (as mg/kg), maximum on dry basis			
(viii)	Arsenic as (As2O3)	10	1.2	Not tested
	Cadmium (as Cd)	5	0.1	Not tested
	Copper (as Cu)	300	7.1	Not tested
(1)	Chromium (as Cr)	50	1.5	Not tested
(ix)	Mercury (as Hg)	0.15	Not detected	Not tested
	Lead (as Pb)	100	0.91	Not tested
	Zinc (as Zn)	1000	34.1	Not tested

- Currently, majority of FOM produced by CBG producers is disbursed to farmers in the catchment area (<30 Kms) of their plants
- FOM is supplied in 'as is' form & in 'bulk & loose' form at minimal price point or free of cost
- Some CBG producers are processing their FOM as per FCO norms and marketing it through fertilizer marketing companies (FMCs) 'in bag' form but still struggling with demand & right price
- CBG producers like Verbio are further thinking of developing high value product (better price and better demand in comparison to organic manure) like PROM using FOM produced

PRIMARY INSIGHTS AND EAC ANALYSIS Fermented Organic Manure – Industry Takeaways

CBG producers are facing challenges in terms of FCO categorization of FOM, lack of market demand; revision in FOM categorization under FCO and, MDA and offtake support are recommendations from CBG producers.

Challenges:

 FOM produced in 'as is' form i.e., at high moisture doesn't comply to FCO norms Organic manures having sub standard quality are sold in market at unrealistic prices which eventually declines farmers interest for recurring demand

Redefine

FOM under

FCO Norms

Industry Takeaways:

- Broaden/adapt existing FCO standards or amend/ create exception for inclusion of FOM in 'as-is' form from CBG units
- To include FOM as per FCO Norms in terms of NPK composition, FCO norms should be broadened in terms of moisture (60-80%), C/N ratio (<60) & pH (6.5-9) due to process and raw material involved in CBG units
 - As FOM generated from CBG units is source of organic carbon and not NPK, FCO should be amended to include FOM where it should qualify on basis of its rich organic carbon content and should not contain heavy metals content over maximum limit prescribed in FCO

Challenges:

- Lack of market demand for organic manures due to:
 - Easy availability of low cost (highly subsidized) chemical fertilizers like urea
 - Gap in recommended practices and implementation at ground level
 - Lack of awareness with large section of farmers

Create Market Industry Takeaways: Awareness for

- FMCs should be instructed for mandatory offtake of FOM generated through CBG plants in the catchment areas of these units
- ICAR should be appointed as nodal agency for mapping & validating FOM production from CBG units and on basis of the ICAR approval monetization to be established

FOM

Challenges:

Government has over the years launched several schemes to aid production of organic fertilizers however the overall impact of these attempts are overshadowed by the subsidies received for chemical fertilizers

Promote FOM Industry Takeaways:

- using Government Support
- Provide 'Market Development Assistance' (MDA) for generated FOM till it achieves commercial market acceptance
- FOM product cost could vary from INR 3 per kg to INR 5 per kg (depending on production cost and process deployed) on an 'as-is' basis hence Indian Government should consider providing maximum relief to producers

"ICAR is going to play the most vital role as a nodal agency in revisiting the current FOM standards across various feedstocks and providing recommendations accordingly. Furthermore, it would increase farmer and public awareness of the benefits of FOM."

- Sanjeev Nagpal, Sampurn Agri Ventures Private Limited

PRIMARY INSIGHTS AND EAC ANALYSIS Carbon Credits – India and Global climate leadership

India has consistently made its targets more stringent to reduce its emission intensity and move towards long term goal of net zero by 2070.

INDIA'S VOLUNTARY PLEDGE COPENHAGEN-2009

- Voluntary target of reducing the emission intensity of our GDP growth by around 20%-25% by 2020 in comparison to 2005
- National action plan on climate change
- Improving energy efficiency by 20% by 2020 and
- Adding an additional 6 million hectares of forests over the next several years

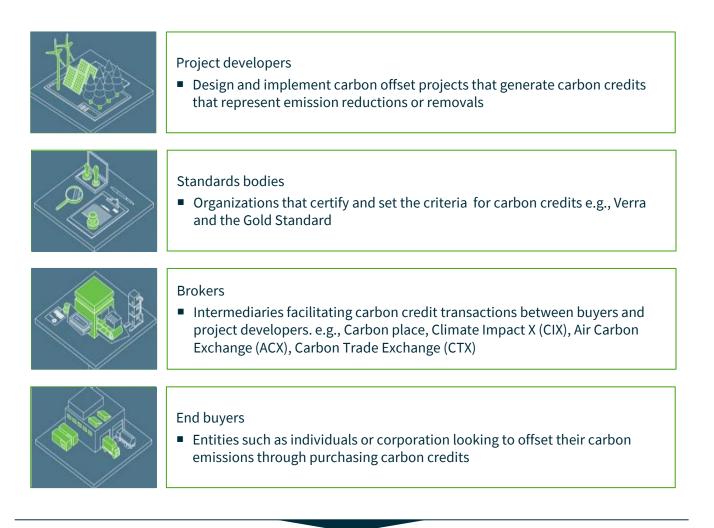
Copenhagen (COP 15)

INDIA'S FIRST NDC SUBMISSION (2016)

- To reduce the emissions intensity of its GDP by 33 to 35% by 2030 from 2005 level
- To achieve about 40% cumulative electric power installed capacity from non-fossil fuel based energy resources by 2030
- To create an additional carbon sink of 2.5 to 3 billion tonnes of CO2 equivalent through additional forest and tree cover by 2030

Paris Agreement (COP 21)

INDIA'S UPDATED NDC (2022)


- To reduce emission intensity of GDP by 45% by 2030, from 2005 level
- To achieve about 50% cumulative electric power installed capacity from non-fossil fuelbased energy resources by 2030
- Long term goal of reaching net-zero by 2070
- Mass movement for 'LIFE'– 'Lifestyle for Environment as key to combat climate change

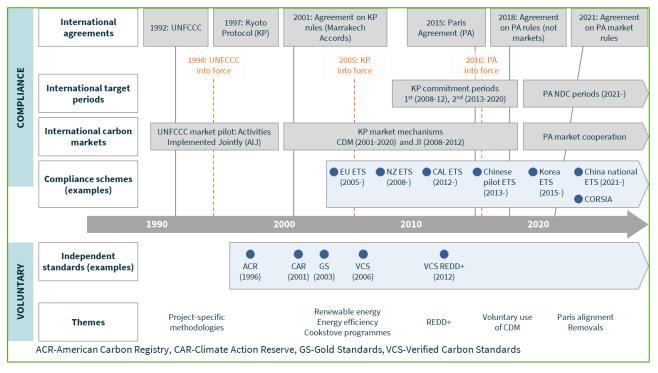
Glasgow (COP 26)

India's emission intensity of gross domestic product (GDP) has reduced by 24% between 2005 and 2016. Renewable energy has a share of 40.2% as (incl. Hydro) in the total installed generation capacity in the country. PRIMARY INSIGHTS AND EAC ANALYSIS Carbon Credits – An Introduction

Carbon markets are trading systems in which carbon credits are sold and bought. Compliance carbon market (e.g., CDM, Paris Agreement Article 6.4, EU-ETS) and voluntary carbon markets (Verra, GoldStandard etc.).

Carbon Credit also referred to as a carbon offset

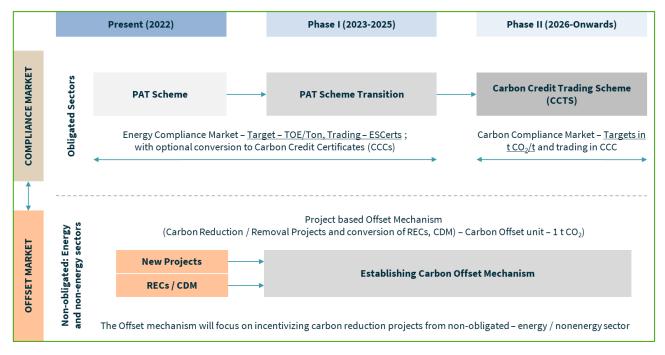
One carbon credit



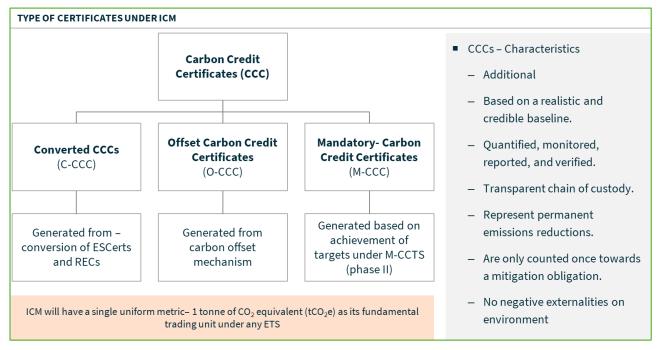
One metric ton of GHG emissions

A carbon credit can be sold multiple times until it is retired by the end user that wants to claim that credit's impact

International agreements and countries/ corporations committing to carbon neutrality have spurred carbon credits/ offset market, comprising of compliance (mandatory) and voluntary markets.

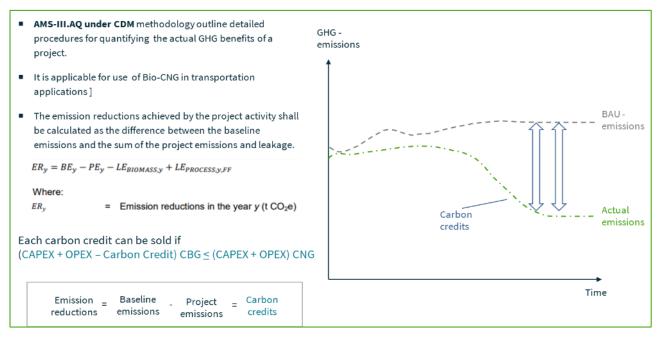

GLOBAL EMISSION TRADING SCHEME

The number of ETS in operation has grown to 28, covering 9 GT which is 17% of global emissions, another eight are under development and expected to be in operation in the next few years.



India is the world's second largest developer and supplier of Carbon Credit Transition of existing PAT scheme and REC Mechanism in Carbon Credit Trading Scheme (CCTS).

TYPES OF CERTIFICATES AVAILABLE


The voluntary (offset) market is expected to enter into force by July 2023, followed by the compliance market. According to current plans, the first compliance cycle would begin in 2024.

PRIMARY INSIGHTS AND EAC ANALYSIS Carbon Credits – CBG producer's relevance



Availability of CBG -specific methodologies is essential for harnessing carbon markets; residue biomass based CBG production is considered for illustration purposes.

INDICATIVE REVENUE CALCULATIONS

Carbon Credit Certificates as additional revenue streams for CBG producers. Please find below indicative revenues from organic MSW feedstock based 10 TPD CBG plant.

PRIMARY INSIGHTS AND EAC ANALYSIS Carbon Credits – Normal Project Timeline

Key steps and indicative timeline from project concept design to issuance of carbon credit are detailed below. It is estimated to complete the whole carbon cycle between 12 to 18 months.

Development & application of approved methodology Development of project description documents and stakeholder consultation. Preparation of supporting documents. 2-3 months depending on documents and data availability		 Registration b selected stand 2 - 3 months o on registry 	dard	 Contracting of an approved third-party entity and execution of the verification approx. 2 – 6 months 		
Project Design	Validation	Registration	Monitoring	Verification	Certification/ Issuance	
	 Contracting of Validation and Body (VVB) and the validation 6 – 9 months d VVB availabilit 	Verification d execution of epending on	 Reporting on emiss reductions accordi selected methodol and monitoring pla (after implementat Normally once eve year, subject to dar quality and availab 	ng to logy an cion) ry ta	 Contracting of an approved third-party entity and execution of the verification approx. 3 months 	

Carbon Credits can be claimed under FOM theoretically as methodologies exists for generating Carbon Credits through increase in SOC level but practically very challenging as currently monitoring the SOC level is difficult"

- Rachit Verma, EVI

If FOM is sold to different farmers having their own land, it would be difficult to monitor the verification of GHG emission reduction and is not cost-effective to get carbon credit.

- Rohit Vakkalagadda, Enking

From a plant generating 1 TPD CBG for 300 to 320 days about 3000 to 3500 Carbon Credits can be generated (based on output on the basis of input different feedstock will lead to different credit generation).

- Rohit Garg, South Pole

Industry Case 1 – Paddy Straw feedstock

SNIPPETS	
SUPPLY SECURITY	 Challenges in terms of Information on collectable potential of feedstocks Identification & allocation of feedstock catchment Forecasting of evolving cropping pattern
OFFTAKE MODEL - RO	 Non-continuous sale but continuous production so matching of production-sale curve is not realistic Huge logistics cost for serving multiple RO due to small volumetric demand
OFFTAKE MODEL – LINE	 Risk of Supply Demand curve & Fluctuation will be eliminated with expected line implementation Better alternate for producers as of today is to supply through ROs but high logistics cost is involved
CARBON CREDITS	 Carbon credit can be availed for production of cleaner fuel i.e. CBG but reduction in pollution due to raw material collection cannot be claimed
TAXATION V	 Taxation issue in blending; there is no clarity on How documentation, GST & VAT will be offsetted CGD need better clarity as any taxation issue/ non-clarity will result in their hinderance on blending

CHALLENGES AND RISKS

- Key risk related to feedstock: Ensuring continuous supply with required quality and storage risk (fire, rain etc)
- 20-50% daily fluctuation on maximum & minimum offtake volume resulting in flaring of CBG
- Average sale per Retail Outlet (RO) is 900-1200 kg per day which is non profitable for CBG producer, CGD, OMC & Dealer
- Absence of a regulated platform for Carbon credits
- Sales of FOM is miniscule, advantages against NPK fertilizers not clearly passed down to the customers
- Taxation structure GST and VAT applicability and offset

Supply is not continuous for agri feedstock-based biogas producers. The raw material/feedstock is sourced based on the seasonality (different crops over year) and needs to be stored for the rest of the year

Industry Case 2 – Straw + Pressmud feedstock

SNIPPETS	
SUPPLY SECURITY	 Press mud and paddy straw is used as per availability Feedstock is collected in the window of October and March must be stored for the rest of the year
STORAGE II	 Storing of press mud and paddy straw poses a challenge since it can decay easily Challenge of storing the feedstock away from moisture
OFFTAKE MODEL - RO	 Sales through own retail outlet ~ 3- 5 MT CBG/ day Excess gas is supplied to sister concern since it must otherwise be flared due to storage constraints
CUSTOMER IV	 Currently operating through own RO, sold to consumers directly Sister concern sells excess gas to industrial customers
FOM V	 FOM is given in loose form to nearby farmers for free Dryer/ Sundrying is not implemented since it's a cost and cannot be compensated by the current acceptability of FOM

CHALLENGES AND RISKS

- Performance issues are faced due to variation in the feedstock quality
- Supply and storage risk
 - Collection happens through the company and is a cost
 - Window for feedstock collection is small thus everything needs to be stored for the rest of the year
- Selling of biofertilizers is a challenge as the digestate gets decomposed in 20 days
- Paddy straw is very corrosive to the machinery
- Land maintenance cost is too high

Aggregation is done through balers; farmers are not directly contacted in most cases procurement of straw is done in form of bales. Small size tractor trailers used to transport the feedstock within 10 km range.

Industry Case 3 – Cow dung feedstock

SNIPPETS	
SUPPLY SECURITY	 Procures the cattle dung from the farmers living in 10 km radius of the plant Feedstock supply is continuous
FEEDTSOCK QUALITY	 Sand and silt in the feedstock is a challenge No storage involved - entire quantity of feedstock is utilized on daily basis
OFFTAKE MODEL	 Sales through own ROs better revenue and autonomy Produced quantity from existing plant gets completely sold
DEMAND OUTLOOK	 Plans to set up additional plants; will have issues of demand stability vs. production
CARBON CREDITS	 Not a focus in the immediate short term Financial evaluation is ongoing

CHALLENGES AND RISKS

- Quality of feedstock
 - Presence of excess Sand and silt
- Maintaining pressure while transporting CBG to RO through pipeline
- Average sale per Retail Outlet (RO) is 750-800 kg per day which is non profitable for CBG producer, CGD, OMC & Dealer

Most companies EAC talked with are aware of the concept of Carbon Credits and have done rough calculations on possibilities and amount of credit that can be claimed but are wary of the investment they will need to make, especially for smaller sized players

Industry Case 4 – Pressmud and Chicken Litter feedstock

SNIPPETS	
SUPPLY SECURITY	 Press mud is collected from sugar mills up to 150 km radius Chicken litter collected from nearby areas Consistent supply of feedstock
FEEDTSOCK QUALITY	 No influence over aggregating point therefore the quality of feedstock procured depends upon supplier side Fresh feedstock gives higher yield of CBG
OPERATION CONTINUITY	 Plant is operating consistently and has stopped only for maintenance No pre-treatment needed for pressmud
OFFTAKE IV	 Contract with IOC Contract with local restaurants
FOM V	 FOM is supplied to large fertilizer companies, large distributors and nearby farmers FOM generated needs to be processed further to meet FCO standard

CHALLENGES AND RISKS

- Unforeseen climatic conditions such as heavier rains than expected can delay operation of sugar mills
- To meet the FCO standards the company has to incur costs to process the FOM thus keeps the costs sometimes higher than the selling price of FOM
- Operations are loss making with current yield and in the absence of Carbon credits revenues

Tamil Nadu has two seasons for sugarcane which starts from Nov to March and short second one from July to August due to which storage is only required for couple of months and the feedstock continuity is much better

Industry Case 5 – Agri residue and Animal Waste feedstock

•	SNIPPETS		
E	SOURCING		 Feedstock collection window October to March for Agri residue Animal waste throughout the year Aggregation is outsourced; feedstock is stored for the year
E	CAPACITY	•	 2.5X of current production can be achieved with existing capacity
E	PRICING	•	 Slurry is sold at 50 INR/ litre or 40 INR/ kg in Punjab Similar slurry can be given away at 100 INR / 5000 litres in Southern Maharashtra because of storage issues
E	OFFTAKE	IV	 Company uses biogas to produce power that they sell to the local power distribution company
E	FOM	V	 Marketing of FOM can be carried out by educating user about the long-term benefits of FOM on crop heath & availability of earning credits by increasing SOC levels Market expansion to urban areas

CHALLENGES AND RISKS

- Growth and acceptance amongst farmers for FOM is low
 - Clarity on the performance of FOM against chemical fertilizers is still unclear to the users
- Sales of FOM are affected, as marketing is difficult due to involvement of multiple agencies and non-uniform FOM composition compared to chemical fertilizers
- Forced to give away to nearby farmers almost free of cost

Most biogas and CBG plants are struggling to dispose of their biomanure. These plants are forced to store bio-manure for long periods, unless they are sold, leading to storage issues and cost

assessment of Investment required, RoI, partners and cost and revenue streams

WANT TO KNOW MORE? CONTACT OUR EXPERTS

Ketan Jadhav +91- 96641 45856

Anup Barapatre +91- 99670 29339

Rituraj Shailendra +91- 79708 83049

WHERE YOU CAN FIND US - EAC AROUND THE GLOBE

EAC MUNICH

EAC - Euro Asia Consulting PartG Widenmayerstraße 29 80538 München

Phone +49 89 92 29 93-0 eac-muc@eac-consulting.de

EAC SHANGHAI

EAC - Euro Asia Consulting Sunyoung Centre, Rm. 801 398 Jiangsu Road 200050 Shanghai/ China

Phone +86 21 63 50 81 50 eac-sha@eac-consulting.de

EAC MUMBAI

EAC - Euro Asia Consulting Pvt. Ltd. 704, Leela Business Park, Andheri Kurla Road, Andheri (East), Mumbai -400 059/ India

Phone +91 77 18 96 71 26/ 27 eac-mum@eac-consulting.de

EAC Kuala Lumpur

EAC - Euro Asia Consulting GBC Menara Hap Seng 2 Plaza Hap Seng, No. 1 Jalan P. Ramlee 50250 Kuala Lumpur

Phone: +60 43 9235 1800 eac-sea@eac-consulting.de