



## Workshop: Strategies for emission control on biogas upgrading plants

Technologies for the treatment of gases with low methane content

Jan Liebetrau, Rytec GmbH, IEA Bionergy Task 37

Niederwil Switzerland, October 25 2023

The IEA Bioenergy Technology Collaboration Programme (TCP) is organised under the auspices of the International Energy Agency (IEA) but is functionally and legally autonomous. Views, findings and publications of the IEA Bioenergy TCP do not necessarily represent the views or policies of the IEA Secretariat or its individual member countries.

#### Content

- Methane
- Applications with gases with low methane content to be treated
- Basics for the treatment of the gases
- Technologies for the treatment of gases
- Biogas Upgrading as particular case



#### Methane

| Methane properties                                     |                                                                                   |  |  |  |
|--------------------------------------------------------|-----------------------------------------------------------------------------------|--|--|--|
| Elemental formular                                     | CH <sub>4</sub>                                                                   |  |  |  |
| average residence time of in the atmosphere            | 12.4 years                                                                        |  |  |  |
| global warming potential in relation to carbon dioxide | le Over 20 years, 84 times;<br>over 100 years, 28 times the potential (IPCC AR 5) |  |  |  |
| State of aggregation at 1013 mbar and 293.15 K         | gaseous                                                                           |  |  |  |
| Colour                                                 | colourless                                                                        |  |  |  |
| Odour                                                  | odourless                                                                         |  |  |  |
| Density at 1013 mbar and 273.15 K                      | 0.7175 kg/m³                                                                      |  |  |  |
| Ignition temperature                                   | 595 °C                                                                            |  |  |  |
| Lower and upper explosion limit                        | 4.4 Vol% - 16.5 Vol.%                                                             |  |  |  |
| Solubility in water at 293.15 K and 1013 hPa           | 24.4 mg/l                                                                         |  |  |  |
| Flame temperature                                      | 1970 °C                                                                           |  |  |  |
| Bioenergy                                              | <sup>3</sup> www.ieabioenergy.com                                                 |  |  |  |

## Applications with gases with low methane content to be treated

#### Biogas technology

- Exhaust gases of Combined Heat and Power (CHP) units
- Exhaust gases from biogas upgrading
- Open and non gas-tight digestate storage

#### Agriculture

- Livestock farming, in particular manure management or manure storage
- Cultivation of rice

#### Waste Management

- $\circ$  Landfills
- Biological waste treatment as e.g. composting, drawing off air from waste handling areas

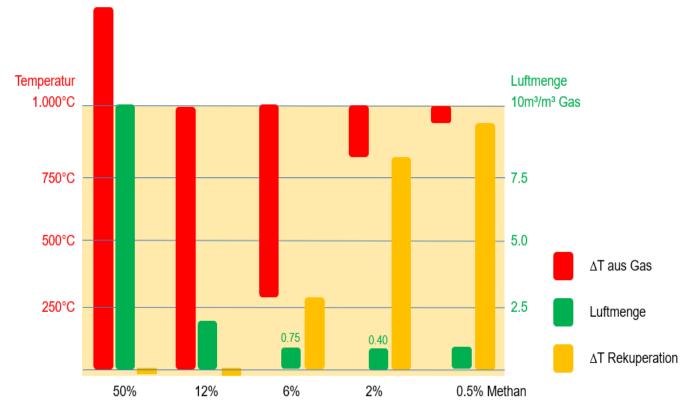


| <u>Application</u>                                                                 | Methane<br>concentration<br>in the gas to be<br>treated | Volume flow methane                                                                                                                      | Oxygen<br>content                   | Pollutant content                                                              |
|------------------------------------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|--------------------------------------------------------------------------------|
|                                                                                    | Vol. %                                                  | m³/h                                                                                                                                     | Vol %                               |                                                                                |
| Biogas upgrading<br>exhaust treatment                                              | 0.1-2                                                   | Depending throughput and<br>technology of plant<br>Example: 200 m <sup>3</sup> /h offgas<br>with 1,2 % Vol. CH4: 2,4 m <sup>3</sup> /h   | Depending on<br>technology:<br>0-18 | Depending on<br>upstream<br>treatment, possibly<br>H <sub>2</sub> S, siloxanes |
| CHP exhaust gas<br>treatment<br>(Example:<br>800 kW <sub>el</sub> ;<br>lambda 1.5) | around 0.2;<br>in some cases<br>significant<br>higher-  | Exhaust gas:<br>1800 ppm CH <sub>4</sub><br>3,5 m <sup>3</sup> CH <sub>4</sub> /h<br>Overall gas:<br>1940 m <sup>3</sup> <sub>n</sub> /h | at λ 1: 0<br>at λ 1.5: 6.2          | Sulphur oxides,<br>hydrogen sulphide,<br>formaldehyde,<br>NOx,                 |



 $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$ Enthalpy of reaction is - 890.95 kJ/mol ( $\Delta G_0 = 780$  kJ/mol, Scheutz 2009)

Parameter influencing oxidation process and technology


- methane concentration in fuel gas and fuel gas/air mixture,
- oxygen concentration,
- content of pollutants and/or
- concentrations and composition of other gases (e.g. water vapour, hydrogen sulphide)



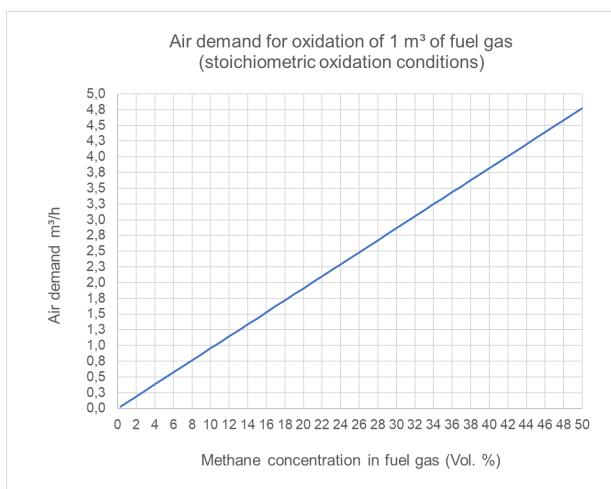
#### **Basics for the treatment of the gases - Oxidation process**

- Retention time,
- Combustion temperature,
- Temperature distribution,
- Turbulence and
- (Excess) Oxygen





Source: Ramthun 2022

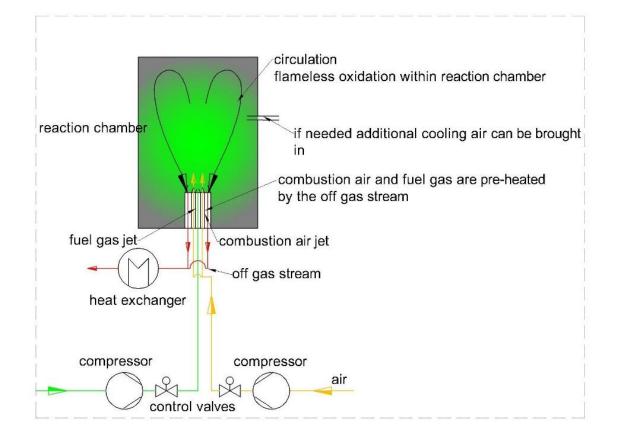

Air is added for oxidation and temperature control (Lambda)

At high methane concentrations air is needed to cool oxidation process

The lower the methane content the lower the temperature increase caused by the oxidation in the gas mixture

The lower the methane content, losses need to be minimized and heat needs to be recuperated to achieve required temperature levels

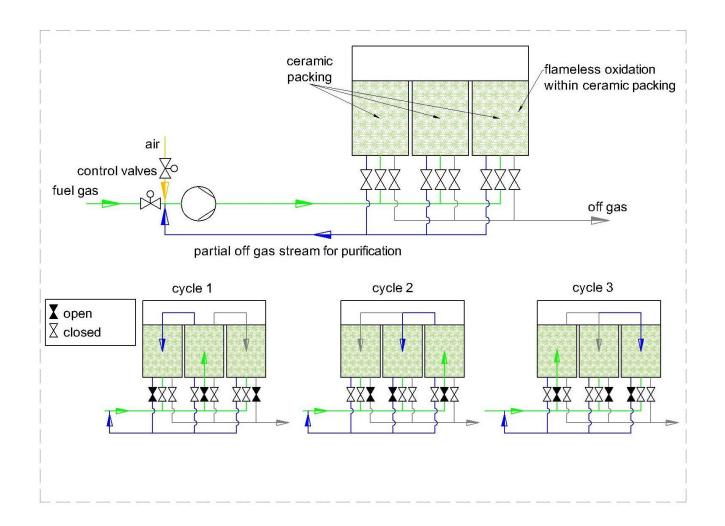





Oxidation with a flame Flare CHP **Flameless** oxidation Flare like applications E Flox **RTO** Catalytic oxidation **Biological oxidation** Methane oxidation filter **Co-inceration** 



| Technology                                                               | Concentration<br>of methane in<br>fuel gas<br>(oxygene free) | Remark                                                                                                                                                                                                                      |
|--------------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Combined heat and power unit<br>(CHP)<br>CHP with lean gas fuel mixer    | 20-100 Vol%                                                  | Low methane concentrations make the startup procedure difficult, lean gas mixers can add more fuel gas than the conventional mixers for natural gas or biogas                                                               |
| Flare                                                                    | 25-100 Vol%                                                  | Oxygen (air) supply and cooling by air is achieved by natural ventilation                                                                                                                                                   |
| Flare with controlled air supply                                         | 12-100 Vol%                                                  | Oxygen (air) supply and cooling air is added by means of a controller;<br>operation of flare can be adjusted to changing conditions if needed (only<br>relevant applications with changing gas composition (e.g. landfills) |
| Oxidation system with heat recuperation to air supply                    | 6-100 Vol%                                                   | Heat recuperation and air supply can be adjusted to changing conditions if needed (only relevant applications with changing gas composition (e.g. landfills)                                                                |
| Oxidation system with heat<br>recuperation to air and fuel gas<br>supply | (2) 3-100 Vol%                                               | Heat recuperation and air supply can be adjusted to changing conditions if needed (only relevant applications with changing gas composition (e.g., landfills)                                                               |
| Regenerative thermal oxidation                                           | 0,37 - 100 Vol%                                              | High methane concentrations are causing high costs for air addition                                                                                                                                                         |


#### **E Flox Process**



- Flameless oxidation
- Efficient oxidation also for natural gas
- Heat Recuperation through burner design and mixing of exhaust and incoming gases in chamber
- Different Burner designs allow different process parameter



#### **Regerative thermal oxidation**



- Heat exchange on ceramic packing
  material
- Discontinuous, changing flow directions
- Reduction of heat losses
- Low off gas temperature
- High heat regeneration capacity
- Autothermic from about 0,37 Vol. CH<sub>4</sub>
- 2 chamber and 3 chamber systems
- Simple process
- Energy intensive start up process



## **Biogas upgrading**

- Upgrading removes CO<sub>2</sub> from Biogas to reach standard gas composition (most often natural gas)
- Different technologies are applied to achieve that
- Methane slip is different for the technologies
- According to regulations and plant specific permission the slip is emitted directly or treated
- The regulations refer usually to legislation for clean air as well as regulations for eligibility for support mechanism within the renewable gas utilization
- Monitoring is varying

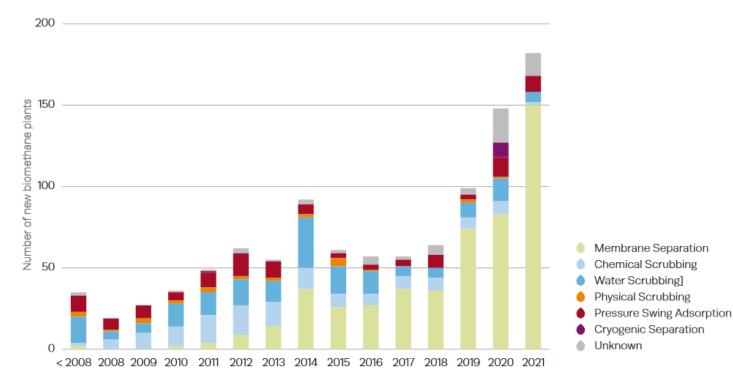





Figure 2.15 – Number of new biomethane plants in Europe per upgrading technology, 2008 – 2021

Source EBA 2022

#### Biogas upgrading - options to reduce emissions

- 1. Optimization of upgrading technology to reduce methane slip
- 2. Combination of upgrading and subsequent methane oxidation in post treatment
- 3. Combination of biomethane upgrading and  $CO_2$  liquefication if the liquefication exhaust is recycled back to the upgrading or utilized, the emissions are reduced
- 4. Parallel upgrading (e.g. for a local fueling station) and CHP operation the upgrading exhaust can be recycled into the raw gas and used in the CHP, works only for a fraction of the biogas to the upgrading until the methane concentration is too low for efficient upgrading and CHP operation.
- 5. (Co-Incineration of off gases)



## Biogas upgrading - methane slip from upgrading

| Biogas upgrading technology     | Methane slip<br>(Vol% from upgraded methane) | Sources                |  |  |
|---------------------------------|----------------------------------------------|------------------------|--|--|
| Pressure swing adsorption (PSA) | < 2                                          | Angelidaki et al. 2018 |  |  |
|                                 | 1.8-2                                        | Bauer et al. 2012      |  |  |
| Water scrubber                  | 1.1-2                                        | Kvist and Aryal 2019   |  |  |
|                                 | < 2                                          | Angelidaki et al. 2018 |  |  |
|                                 | 1                                            | Bauer et al. 2012      |  |  |
| Chemical adsorption (Amin)      | 0.04-0.07                                    | Kvist and Aryal 2019   |  |  |
|                                 | < 0.1                                        | Angelidaki et al. 2018 |  |  |
|                                 | 0.1                                          | Bauer et al. 2012      |  |  |
| Physikalische Adsorption (PGK)  | 2-4                                          | Angelidaki et al. 2018 |  |  |
| Membrane technology             | 0.5-0.6                                      | Kvist and Aryal 2019   |  |  |
|                                 | < 0.6                                        | Angelidaki et al. 2018 |  |  |
|                                 | 0.7-1                                        | Ardolino et al. 2017   |  |  |
|                                 | 0.5                                          | Bauer et al. 2012      |  |  |
| Cryogenic separation            | 2                                            | Angelidaki et al. 2018 |  |  |



#### Biogas upgrading - methane slip from upgrading

- PSA and Water scrubber tend to be above 1 %,
- Membrane technologies between 0,5 1 %
- Chemical scrubbing processes (amine wash) below 0,1 %

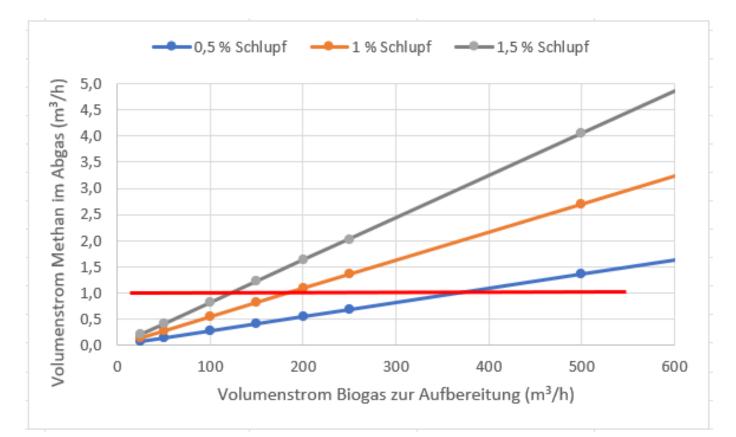


#### Biogas upgrading - methane slip from upgrading

Membrane technology can control the methane slip by means of

- membrane used,
- dimensions of the membrane and
- the operation

Effect is limited, costs are increasing due to higher throughput through compressor and more membrane area needed


Different manufacturer give 0,2 %; 0,5 and 1 % (for small plants) as limits to be achievable



#### Post treatment

#### **Technical limits for Regenerative Thermal Oxidation**

- < 10 kW or 1m<sup>3</sup>CH<sub>4</sub>/h (app. Manufacturer given limit – no standard application in this size! So difficult to judge costs)
- 0.37 Vol. % methane in the fuel gas for autothermic conditions



# Limits of treatment via regenerative thermal oxidation (RTO)

|                |     | Plant capacity                            |     |     |      |      |  |
|----------------|-----|-------------------------------------------|-----|-----|------|------|--|
|                |     | m³/h                                      |     |     |      |      |  |
| Biogas         | 92  | 185                                       | 370 | 740 | 1481 | 2963 |  |
| Methane        | 50  | 100                                       | 200 | 400 | 800  | 1600 |  |
| Carbon dioxide | 41  | 83                                        | 167 | 333 | 666  | 1333 |  |
| Methane slip   |     | Volume flow of methane in the exhaust gas |     |     |      |      |  |
| 0,2%           | 0,1 | 0,2                                       | 0,4 | 0,8 | 1,6  | 3,2  |  |
| 0,5%           | 0,2 | 0,5                                       | 1,0 | 2,0 | 4,0  | 8,0  |  |
| 1%             | 0,5 | 1,0                                       | 2,0 | 4,0 | 8,0  | 16,0 |  |



#### **Emission reduction on upgrading facilities**

- Upgrading processes have different slip characteristics
- Amine wash has very low slip
- Membrane tend to have slip between 0,5 and 1 %, indifferent feedback from manufacturer
- Posttreatment with RTO has technical limits and high specific costs at small units
- Regulation for small plants (e.g. below 100 m<sup>3</sup>CH<sub>4</sub>/h) should reflect on that, or plants will have high specific costs



Jan Liebetrau Jan.Liebetrau@rytec.com



#### www.ieabioenergy.com