

results of the measurement campaign in Germany

Lukas Knoll (DBFZ)

Workshop of IEA Bioenergy Task 37 - Energy from Biogas; 25.10.2023

EmMinA


Emission reduction during biogas upgrading, compression and injection

- Duration: Sep. 2021 Aug. 2024
- Lead: DBFZ
- Funding body: Fachagentur Nachwachsende Rohstoffe e. V. (FNR)
- Partner: Rytec Biogas und Bioenergieanlagen
- Objectives:
- > Determination of emissions from biogas upgrading units and exhaust gas treatment (EGT) technologies
- Evaluation of EGT technologies in terms of cost, energetic efficiency, performance, emission reduction and operational experience.
- Evaluation of methane oxidation filters (MOX) for lean gas treatment as an alternative to existing processes for sites with low volume flows (Rytec).

Potential methane emission sources

$\text{GWP}_{100} \text{ CH}_4 \rightarrow 28 \text{x}$ stronger than CO_2

Background

- End of 2022: 243 BGP with different BGUU in Germany
- Membrane separation currently most commonly used across the EU
- In Germany: Limitation of methane amounts in the separated CO₂/off-gas stream up to (0.2 %)

 \rightarrow exhaust gas treatment required

- Exception: Amine scrubber
- Regenerative thermal oxidation (RTO) most commonly used process for exhaust gas treatment (EGT)

DBFZ

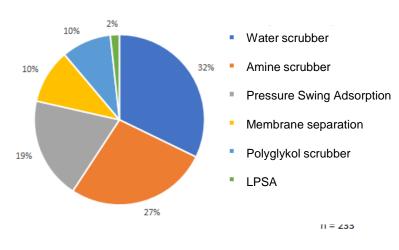
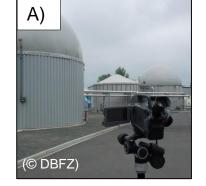


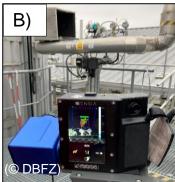
Figure: Distribution of biogas upgrading processes in Germany (DBFZ operator surveys, 2010 - 2022; data as of 04/2023)

Plant selection

No.	Process	EGT technologies	Initial operation	Feed-in capacity (m³/h biomethane)	Measurements
A01	Membrane sep.	RTO	2014	217	10/2022
A02	Membrane sep.	RTO	2016	727	11/2022
A03	PSA	RTO	2016	700	
A04	PSA	RTO	2013	406	05/2023
A05	Membrane sep.	RTO	2019	550	09/2023
A06	Amine based	-	2014	750	03/2023
A07	Amine based	-	2020	945	
80A	Amine based	-	2013	700	
A09	Membrane sep.	RTO	2017	350	
A10	Membrane sep.	RTO	2013	340	09/2023
A11	Membrane sep.	RTO	2015	620	04/2023
A12	Water scrubbing	RTO	2012	500	
A13	Water scrubbing	RTO	2013	1421	05/2023
A14	PSA	RTO	2013	500	
A15	Water scrubbing	RTO	remaining	remaining	

Measurements completed
 Measurements pending

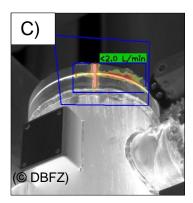

Lukas Knoll * Workshop of IEA Bioenergy Task 37 - Energy from Biogas * 25.10.2023


Quelle: https://www.stepmap.de/landkarte/deutschlandkarte-0TbXIw8SPf-i 5

Measuring methodology

Single Source Analysis (on-site approach)

- Plant inspection → Identification of individual sources (OGI camera (A), methane laser).
- Setup of the measuring points depending on the source type
- Quantification:
- A) Domes (volume flow + conc. measurement)
- B) Q-OGI-camera
- Summation of the individual sources to the total methane load of the plant
- OGI Optical Gas Imagin



BF7

Abbildung:

A) OGI-camera (FLIR) in use for leak detection at the DBFZ research biogas plant;
B) Quantification by Q-OGI camera (SENSIA)
C) Quantification of a leakage on a flange

Typical emission sources at BGUU

- Gas-carrying plant components in the outdoor area (e.g. flanges, ball valves, valves, etc.)
- Enclosed plant components with forced ventilation (e.g. membrane- , compressor- or activated carbon containers)
- Exhaust gas of the BGUU after the RTO
- Feed-in station & Compressor station

(e.g. leakages, overpressure blower, blower for gas analysis)

Leak detection

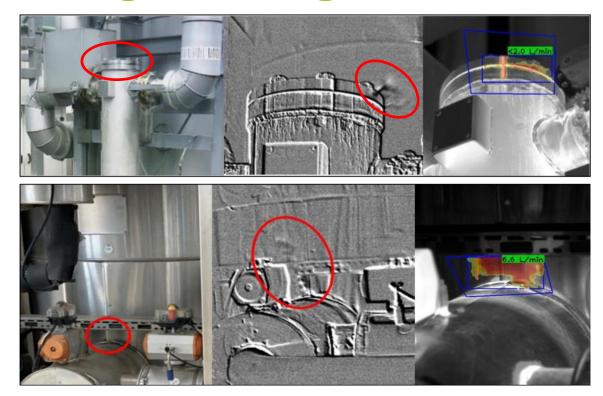
BGP: Biogas plant BGUU: Biogas upgrading unit BGIU: Biogas injection unit DBFZ

BGP: On average 3 leakages per plant

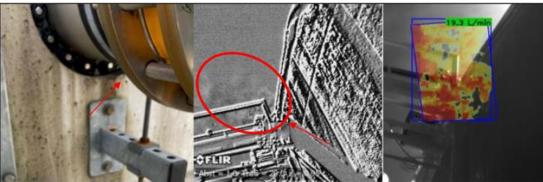
- Gas pipes, pipe penetration (8x)
- Wires to adjust agitators (6x)
- Increased CH_4 conc. in the supporting air (4x)
- Pressure relief valve (leakage) (1x)
- Pressure relief valve (operational emission) (1x)

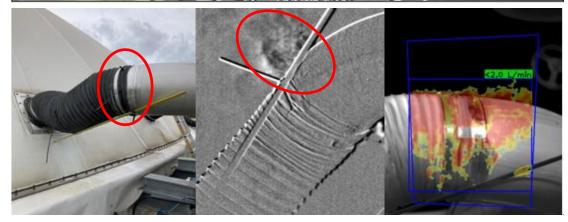
BGUU: On average 1 leakages per plant

• Flanges, valves, ball valves


BGIU:

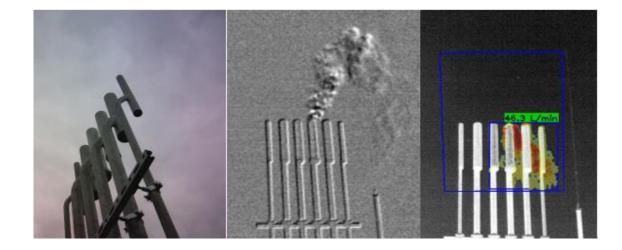
 At one plant increased methane leakage at overpressure blower


On average 4 leakages were found per plant

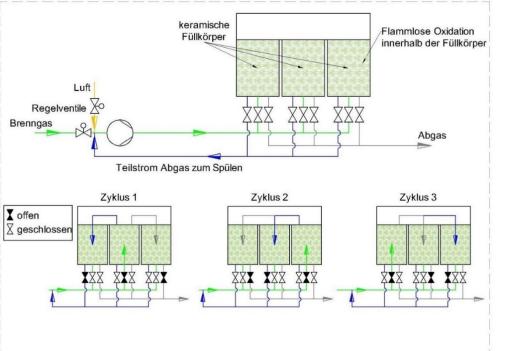

1 out of 7 RTO units was not in operation

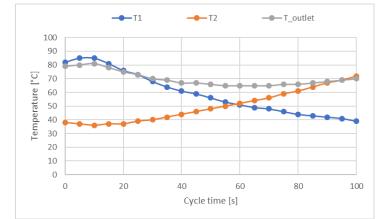
Biogas upgrading unit: Leakage from flanges and valves

Leakage at a Gas pipes and pipe penetration to the fermenter/post digester

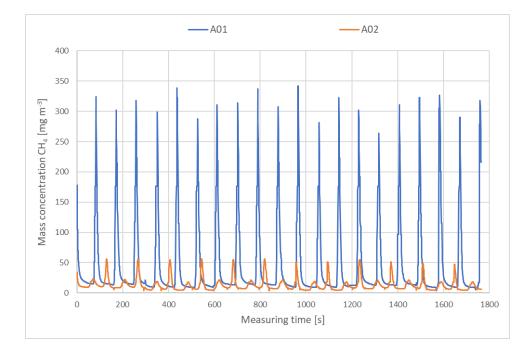


DBFZ


Compressor station of the feed-in unit (active blowout at overpressure)



Regenerative thermal oxidation



- The gas to be treated flows into the heat exchanger, heats up and oxidizes.
- In the process, the inlet area cools down.
- Accordingly, there is still unburned gas in the cold inlet area when switching between cycles, which leads to emission peaks.

Emission peaks in the RTO exhaust gas

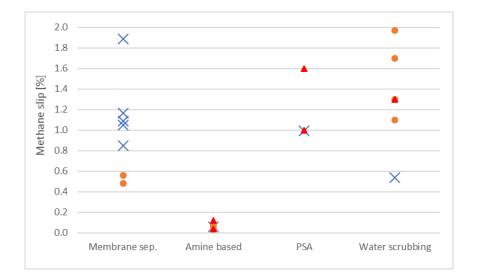
No.	Process	Max. peak [mg m ⁻³]	Average [mg m ⁻³]
A02	2-chamber RTO with backflush	57	13
A11	2-chamber RTO with backflush	46	13
A05	2-chamber RTO without backflush	271	26
A01	2-chamber RTO without backflush	342	46
A13	2-chamber RTO without backflush	826	219
A10	2-chamber RTO without backflush	2745	283
A06	without RTO		414
A04	RTO out of work	12796	6740

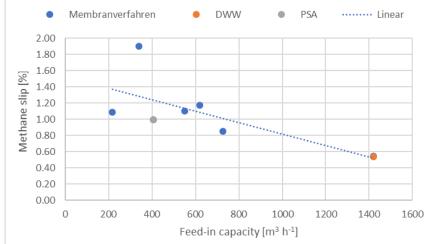
A01: 2-chamber RTO without backflush A02: 2-chamber RTO with backflush

Threshold of 20 mgC/m³ is only complied with by 2-chamber RTO with backflush

Exhaust gas measurements

Nr.	Feed-in capacity	Initial operation	Process	CH ₄ slip ¹⁾	EGT ²⁾	Emission rate	EF-CH ₄ ³⁾	Outlet temp. RTO
	[m ³ h ⁻¹]	[Jahr]	[-]	[%]	[-]	[g _{CH4} h ⁻¹]	[%]	[°C]
A01	320	2014	Membrane sep.	1,09	RTO	36	0.02	45
A02	730	2016	Membrane sep.	0,85	RTO	24	0.01	75
A11	700	2015	Membrane sep.	1,17	RTO	21	0.01	90
A06	750	2013	Amin based	0,06	-	276	0.05	-
A04	400	2013	PSA	0,99	RTO*	2504	0.86	k.A.
A13	1421	2013	Water scrubbing	0,54	RTO	561	0,06	110
A05	550	2019	Membrane sep.	1,1	RTO	30	0.01	70
A10	340	2013	Membrane sep.	1,89	RTO	666	0,27	200

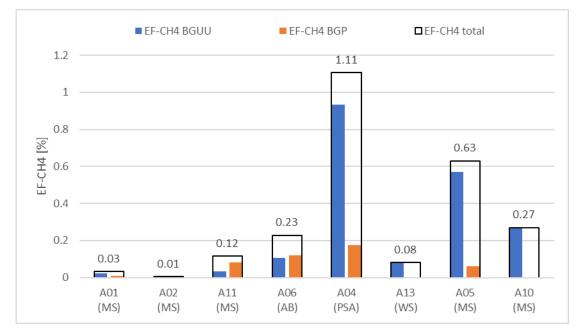

1) before exhaust gas treatment EGT (operator information)


- 2) exhaust gas treatment (EGT)
- 3) Emission factor of the BGUU from the CO2 exhaust air flow related to the average biomethane production of the respective plant.
- * RTO not in operation at the time of measurements due to maintenance work

Average methane slip (without amine scrubbing) is 1.1 %
 Average EF-CH4 after the RTO (without AO4) is 0.06%

Methane slip of different upgrading techniques

× EmMinA


- Kvist & Aryial, 2019
- 🔺 MONA, 2015

Total emission factor of the plant A04

Plant area	Emission source	Q _{CH4}	EF CH ₄	Notes	
Plant area	Emission source	[g h ⁻¹]	[% CH4]	Notes	
BGUU Exhaust gas		2504	0.862	Measurement at full load; RTO not in operation	
BGUU Leakage 1: CO ₂ gas storage		60	0,021		
BGUU Leakage 2: Flange		53	0,018	Has been fixed by the plant operator	
BGUU Leakage 3: Ball valve		91	0,031		
	2708	0,932			
Fermentation	Supporting air	70	0,024	6 double membrane gas storage tank: with supporting air; determination of flov velocity at the supply air duct	
Fermentation	Leakage 4: Foil roof connection	260	0,045	3 leaks found, 2 quantified with Q-C	
rementation	Leakage 5: Pipe penetration	611	0,105	camera	
	941	0,174			
Feed-in unit Forced ventilation		0,003	0,000		
	3649	1,11			

Total emission factor per plant

- MS: Membrane separation
- AB: Amine based
- PSA: Pressure swing adsorption
- WS: Water scrubbing

- CHP emissions not considered
- All plants had covered digestate storage tanks
- A02: no access to the BGP
- A04: RTO not in operation
- A05: 80% of emissions through overpressure blower at the Feed-in unit
- Average total EF-CH₄: 0,31 % (n=8)

Conclusion and outlook

- Mean methane slip of the measured BGUU (without amine scrubbing) is 1.1 % (n=7)
- The methane emission factor after the RTO was on average 0.06% (n=7)
- Average methane emission factor of the entire plant of 0.31% (n=8)
- On average 4 leakages were found per plant
- Emission measurements planned at 7 additional BGUU (in 2023 and 2024)
- RTO most widely used, technically the only solution for methane slip less than 2%.
- Heat extraction possibly a future solution

LEIPZIGER FACH-GESPRÄCHE

Save-the-Date

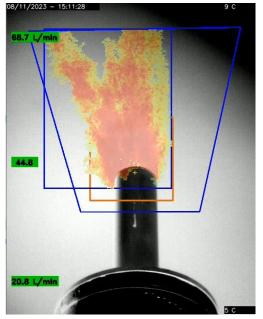
Leipziger Biogas Fachgespräch Emissions from Biogas Plants -Legal Framework, Measurement Methodology & Results from Field Measurements

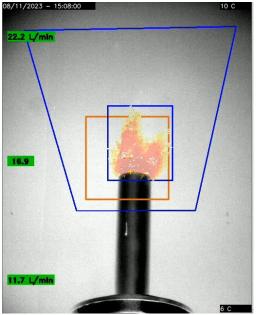
> 29th of November 2023, Leipzig / Online

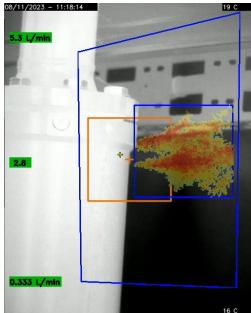
BIOGAS

Deutsches Biomasseforschungszentrum

Smart Bioenergy – Innovations for a sustainable future


Contact:


M.Eng. Lukas Knoll lukas.knoll[at]dbfz.de



DBFZ Deutsches Biomasseforschungszentrum gemeinnützige GmbH Torgauer Straße 116 D-04347 Leipzig Tel.: +49 (0)341 2434-112 E-Mail: info@dbfz.de www.dbfz.de

Fotos: DBFZ, Jan Gutzeit, DREWAG/Peter Schubert (Titelfolie, rechts), Pixabay / CC0 Public Domain

